Predictions of upcoming movements are based on several types of neural signals that span the visual, somatosensory, motor and cognitive system. Thus far, pre-movement signals have been investigated while participants viewed the object to be acted upon. Here, we studied the contribution of information other than vision to the classification of preparatory signals for action, even in the absence of online visual information. We used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) to test whether the neural signals evoked by visual, memory-based and somato-motor information can be reliably used to predict upcoming actions in areas of the dorsal and ventral visual stream during the preparatory phase preceding the action, while participants were lying still. Nineteen human participants (nine women) performed one of two actions towards an object with their eyes open or closed. Despite the well-known role of ventral stream areas in visual recognition tasks and the specialization of dorsal stream areas in somato-motor processes, we decoded action intention in areas of both streams based on visual, memory-based and somato-motor signals. Interestingly, we could reliably decode action intention in absence of visual information based on neural activity evoked when visual information was available and vice versa. Our results show a similar visual, memory and somato-motor representation of action planning in dorsal and ventral visual stream areas that allows predicting action intention across domains, regardless of the availability of visual information.
Predictive coding of action intentions in dorsal and ventral visual stream is based on visual anticipations, memory-based information and motor preparation / Monaco, Simona; Malfatti, Giulia; Zendron, Alessandro; Pellencin, Elisa; Turella, Luca. - In: BRAIN STRUCTURE AND FUNCTION. - ISSN 1863-2653. - 2019, 224:9(2019), pp. 3291-3308. [10.1007/s00429-019-01970-1]
Predictive coding of action intentions in dorsal and ventral visual stream is based on visual anticipations, memory-based information and motor preparation
Monaco, Simona;Malfatti, Giulia;Pellencin, Elisa;Turella, Luca
2019-01-01
Abstract
Predictions of upcoming movements are based on several types of neural signals that span the visual, somatosensory, motor and cognitive system. Thus far, pre-movement signals have been investigated while participants viewed the object to be acted upon. Here, we studied the contribution of information other than vision to the classification of preparatory signals for action, even in the absence of online visual information. We used functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) to test whether the neural signals evoked by visual, memory-based and somato-motor information can be reliably used to predict upcoming actions in areas of the dorsal and ventral visual stream during the preparatory phase preceding the action, while participants were lying still. Nineteen human participants (nine women) performed one of two actions towards an object with their eyes open or closed. Despite the well-known role of ventral stream areas in visual recognition tasks and the specialization of dorsal stream areas in somato-motor processes, we decoded action intention in areas of both streams based on visual, memory-based and somato-motor signals. Interestingly, we could reliably decode action intention in absence of visual information based on neural activity evoked when visual information was available and vice versa. Our results show a similar visual, memory and somato-motor representation of action planning in dorsal and ventral visual stream areas that allows predicting action intention across domains, regardless of the availability of visual information.File | Dimensione | Formato | |
---|---|---|---|
Monaco2019_Article_PredictiveCodingOfActionIntent.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
5.8 MB
Formato
Adobe PDF
|
5.8 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione