When a system thermalizes it loses all memory of its initial conditions. Even within a closed quantum system, subsystems usually thermalize using the rest of the system as a heat bath. Exceptions to quantum thermalization have been observed, but typically require inherent symmetries(1,2) or noninteracting particles in the presence of static disorder(3-6). However, for strong interactions and high excitation energy there are cases, known as many-body localization (MBL), where disordered quantum systems can fail to thermalize(7-10). We experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmable random disorder to ten spins initialized far from equilibrium. Using experimental and numerical methods we observe the essential signatures of MBL: initial-state memory retention, Poissonian distributed energy level spacings, and evidence of long-time entanglement growth. Our platform can be scaled to more spins, where a detailed modelling of MBL becomes impossible.

Many-body localization in a quantum simulator with programmable random disorder / Smith, J.; Lee, A.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Hauke, Philipp Hans Juergen; Heyl, M.; Huse, D. A.; Monroe, C.. - In: NATURE PHYSICS. - ISSN 1745-2473. - ELETTRONICO. - 2016/12:10(2016), pp. 907-911. [10.1038/nphys3783]

Many-body localization in a quantum simulator with programmable random disorder

Lee A.;Hauke, Philipp Hans Juergen;
2016-01-01

Abstract

When a system thermalizes it loses all memory of its initial conditions. Even within a closed quantum system, subsystems usually thermalize using the rest of the system as a heat bath. Exceptions to quantum thermalization have been observed, but typically require inherent symmetries(1,2) or noninteracting particles in the presence of static disorder(3-6). However, for strong interactions and high excitation energy there are cases, known as many-body localization (MBL), where disordered quantum systems can fail to thermalize(7-10). We experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmable random disorder to ten spins initialized far from equilibrium. Using experimental and numerical methods we observe the essential signatures of MBL: initial-state memory retention, Poissonian distributed energy level spacings, and evidence of long-time entanglement growth. Our platform can be scaled to more spins, where a detailed modelling of MBL becomes impossible.
2016
10
Smith, J.; Lee, A.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Hauke, Philipp Hans Juergen; Heyl, M.; Huse, D. A.; Monroe, C.
Many-body localization in a quantum simulator with programmable random disorder / Smith, J.; Lee, A.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Hauke, Philipp Hans Juergen; Heyl, M.; Huse, D. A.; Monroe, C.. - In: NATURE PHYSICS. - ISSN 1745-2473. - ELETTRONICO. - 2016/12:10(2016), pp. 907-911. [10.1038/nphys3783]
File in questo prodotto:
File Dimensione Formato  
nphys3783.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 716.24 kB
Formato Adobe PDF
716.24 kB Adobe PDF   Visualizza/Apri
Many-body localization.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.75 MB
Formato Adobe PDF
7.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/245661
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 653
  • ???jsp.display-item.citation.isi??? 636
social impact