Let Hd,g,r be the Hilbert scheme parametrizing smooth irreducible and non-degenerate curves of degree d and genus g in Pr. We denote by Hd,g,rL the union of those components of Hd,g,r whose general element is linearly normal and we show that any non-empty Hd,g,rL (d≥g+r−3) is irreducible for an extensive range of triples (d,g,r) beyond the Brill-Noether range. This establishes the validity of a suitably modified assertion of Severi regarding the irreducibility of the Hilbert scheme Hd,g,rL of linearly normal curves for g+r−3≤d≤g+r, r≥3, and g≥2r+3 if d=g+r−3.

On the Hilbert scheme of linearly normal curves in Pr of relatively high degree / Ballico, E.; Fontanari, C.; Keem, C.. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 224:3(2020), pp. 1115-1123. [10.1016/j.jpaa.2019.07.006]

On the Hilbert scheme of linearly normal curves in Pr of relatively high degree

Ballico E.;Fontanari C.;
2020-01-01

Abstract

Let Hd,g,r be the Hilbert scheme parametrizing smooth irreducible and non-degenerate curves of degree d and genus g in Pr. We denote by Hd,g,rL the union of those components of Hd,g,r whose general element is linearly normal and we show that any non-empty Hd,g,rL (d≥g+r−3) is irreducible for an extensive range of triples (d,g,r) beyond the Brill-Noether range. This establishes the validity of a suitably modified assertion of Severi regarding the irreducibility of the Hilbert scheme Hd,g,rL of linearly normal curves for g+r−3≤d≤g+r, r≥3, and g≥2r+3 if d=g+r−3.
2020
3
Ballico, E.; Fontanari, C.; Keem, C.
On the Hilbert scheme of linearly normal curves in Pr of relatively high degree / Ballico, E.; Fontanari, C.; Keem, C.. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 224:3(2020), pp. 1115-1123. [10.1016/j.jpaa.2019.07.006]
File in questo prodotto:
File Dimensione Formato  
BFK.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 345.25 kB
Formato Adobe PDF
345.25 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/242514
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact