Let Hd,g,r be the Hilbert scheme parametrizing smooth irreducible and non-degenerate curves of degree d and genus g in Pr. We denote by Hd,g,rL the union of those components of Hd,g,r whose general element is linearly normal and we show that any non-empty Hd,g,rL (d≥g+r−3) is irreducible for an extensive range of triples (d,g,r) beyond the Brill-Noether range. This establishes the validity of a suitably modified assertion of Severi regarding the irreducibility of the Hilbert scheme Hd,g,rL of linearly normal curves for g+r−3≤d≤g+r, r≥3, and g≥2r+3 if d=g+r−3.
On the Hilbert scheme of linearly normal curves in Pr of relatively high degree / Ballico, E.; Fontanari, C.; Keem, C.. - In: JOURNAL OF PURE AND APPLIED ALGEBRA. - ISSN 0022-4049. - 224:3(2020), pp. 1115-1123. [10.1016/j.jpaa.2019.07.006]
On the Hilbert scheme of linearly normal curves in Pr of relatively high degree
Ballico E.;Fontanari C.;
2020-01-01
Abstract
Let Hd,g,r be the Hilbert scheme parametrizing smooth irreducible and non-degenerate curves of degree d and genus g in Pr. We denote by Hd,g,rL the union of those components of Hd,g,r whose general element is linearly normal and we show that any non-empty Hd,g,rL (d≥g+r−3) is irreducible for an extensive range of triples (d,g,r) beyond the Brill-Noether range. This establishes the validity of a suitably modified assertion of Severi regarding the irreducibility of the Hilbert scheme Hd,g,rL of linearly normal curves for g+r−3≤d≤g+r, r≥3, and g≥2r+3 if d=g+r−3.File | Dimensione | Formato | |
---|---|---|---|
BFK.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
345.25 kB
Formato
Adobe PDF
|
345.25 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione