Physical structures built by animals challenge our understanding of biological processes and inspire the development of smart materials and green architecture. It is thus indispensable to understand the drivers, constraints, and dynamics that lead to the emergence and modification of building behavior. Here, we demonstrate that spider web diversification repeatedly followed strikingly similar evolutionary trajectories, guided by physical constraints. We found that the evolution of suspended webs that intercept flying prey coincided with small changes in silk anchoring behavior with considerable effects on the robustness of web attachment. The use of nanofiber based capture threads (cribellate silk) conflicts with the behavioral enhancement of web attachment, and the repeated loss of this trait was frequently followed by physical improvements of web anchor structure. These findings suggest that the evolution of building behavior may be constrained by major physical traits limiting its role in rapid adaptation to a changing environment.

Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages / Wolff, J. O.; Paterno, G. B.; Liprandi, D.; Ramirez, M. J.; Bosia, F.; van der Meijden, A.; Michalik, P.; Smith, H. M.; Jones, B. R.; Ravelo, A. M.; Pugno, N.; Herberstein, M. E.. - In: EVOLUTION. - ISSN 0014-3820. - 2019:(2019). [10.1111/evo.13834]

Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages

Liprandi D.;Bosia F.;Pugno N.;
2019-01-01

Abstract

Physical structures built by animals challenge our understanding of biological processes and inspire the development of smart materials and green architecture. It is thus indispensable to understand the drivers, constraints, and dynamics that lead to the emergence and modification of building behavior. Here, we demonstrate that spider web diversification repeatedly followed strikingly similar evolutionary trajectories, guided by physical constraints. We found that the evolution of suspended webs that intercept flying prey coincided with small changes in silk anchoring behavior with considerable effects on the robustness of web attachment. The use of nanofiber based capture threads (cribellate silk) conflicts with the behavioral enhancement of web attachment, and the repeated loss of this trait was frequently followed by physical improvements of web anchor structure. These findings suggest that the evolution of building behavior may be constrained by major physical traits limiting its role in rapid adaptation to a changing environment.
2019
Wolff, J. O.; Paterno, G. B.; Liprandi, D.; Ramirez, M. J.; Bosia, F.; van der Meijden, A.; Michalik, P.; Smith, H. M.; Jones, B. R.; Ravelo, A. M.; P...espandi
Evolution of aerial spider webs coincided with repeated structural optimization of silk anchorages / Wolff, J. O.; Paterno, G. B.; Liprandi, D.; Ramirez, M. J.; Bosia, F.; van der Meijden, A.; Michalik, P.; Smith, H. M.; Jones, B. R.; Ravelo, A. M.; Pugno, N.; Herberstein, M. E.. - In: EVOLUTION. - ISSN 0014-3820. - 2019:(2019). [10.1111/evo.13834]
File in questo prodotto:
File Dimensione Formato  
_system_appendPDF_proof_hi.pdf

Open Access dal 23/09/2021

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 6.83 MB
Formato Adobe PDF
6.83 MB Adobe PDF Visualizza/Apri
432-EVO19-spider-silk-anchorages.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/242347
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 26
  • OpenAlex ND
social impact