We consider a nonlocal isoperimetric problem defined in the whole space RN, whose nonlocal part is given by a Riesz potential with exponent a a ε0;N1. We show that critical configurations with positive second variation are local minimizers and satisfy a quantitative inequality with respect to the L1-norm. This criterion provides the existence of a (explicitly determined) critical threshold determining the interval of volumes for which the ball is a local minimizer. Finally we deduce that for small masses the ball is also the unique global minimizer, and that for small exponents a in the nonlocal term the ball is the unique minimizer as long as the problem has a solution.

Local and global minimality issues for a nonlocal isoperimetric problem on R N / Bonacini, M.; Cristoferi, R.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 27:1(2016), pp. 37-50. (Intervento presentato al convegno XXV Convegno nazionale di Calcolo delle Variazioni tenutosi a Levico Terme, Italia nel 2-6 febbraio 2015) [10.4171/RLM/721].

Local and global minimality issues for a nonlocal isoperimetric problem on R N

Bonacini M.;
2016-01-01

Abstract

We consider a nonlocal isoperimetric problem defined in the whole space RN, whose nonlocal part is given by a Riesz potential with exponent a a ε0;N1. We show that critical configurations with positive second variation are local minimizers and satisfy a quantitative inequality with respect to the L1-norm. This criterion provides the existence of a (explicitly determined) critical threshold determining the interval of volumes for which the ball is a local minimizer. Finally we deduce that for small masses the ball is also the unique global minimizer, and that for small exponents a in the nonlocal term the ball is the unique minimizer as long as the problem has a solution.
2016
Rendiconti Lincei: Matematica e Applicazioni
Zürich
European Mathematical Society Publishing House
Bonacini, M.; Cristoferi, R.
Local and global minimality issues for a nonlocal isoperimetric problem on R N / Bonacini, M.; Cristoferi, R.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 27:1(2016), pp. 37-50. (Intervento presentato al convegno XXV Convegno nazionale di Calcolo delle Variazioni tenutosi a Levico Terme, Italia nel 2-6 febbraio 2015) [10.4171/RLM/721].
File in questo prodotto:
File Dimensione Formato  
nota_levico.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 346.74 kB
Formato Adobe PDF
346.74 kB Adobe PDF Visualizza/Apri
Bonacini - Cristoferi, Local and global minimality issues for a nonlocal isoperimetric problem in R^n.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 197.04 kB
Formato Adobe PDF
197.04 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/241385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact