We consider a nonlocal isoperimetric problem defined in the whole space RN, whose nonlocal part is given by a Riesz potential with exponent a a ε0;N1. We show that critical configurations with positive second variation are local minimizers and satisfy a quantitative inequality with respect to the L1-norm. This criterion provides the existence of a (explicitly determined) critical threshold determining the interval of volumes for which the ball is a local minimizer. Finally we deduce that for small masses the ball is also the unique global minimizer, and that for small exponents a in the nonlocal term the ball is the unique minimizer as long as the problem has a solution.
Local and global minimality issues for a nonlocal isoperimetric problem on R N / Bonacini, M.; Cristoferi, R.. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 27:1(2016), pp. 37-50. (Intervento presentato al convegno XXV Convegno nazionale di Calcolo delle Variazioni tenutosi a Levico Terme, Italia nel 2-6 febbraio 2015) [10.4171/RLM/721].
Local and global minimality issues for a nonlocal isoperimetric problem on R N
Bonacini M.;
2016-01-01
Abstract
We consider a nonlocal isoperimetric problem defined in the whole space RN, whose nonlocal part is given by a Riesz potential with exponent a a ε0;N1. We show that critical configurations with positive second variation are local minimizers and satisfy a quantitative inequality with respect to the L1-norm. This criterion provides the existence of a (explicitly determined) critical threshold determining the interval of volumes for which the ball is a local minimizer. Finally we deduce that for small masses the ball is also the unique global minimizer, and that for small exponents a in the nonlocal term the ball is the unique minimizer as long as the problem has a solution.File | Dimensione | Formato | |
---|---|---|---|
nota_levico.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
346.74 kB
Formato
Adobe PDF
|
346.74 kB | Adobe PDF | Visualizza/Apri |
Bonacini - Cristoferi, Local and global minimality issues for a nonlocal isoperimetric problem in R^n.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
197.04 kB
Formato
Adobe PDF
|
197.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione