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Abstract. We consider a nonlocal isoperimetric problem defined in the

whole space RN , whose nonlocal part is given by a Riesz potential with

exponent α ∈ (0, N − 1) . We show that critical configurations with positive
second variation are local minimizers and satisfy a quantitative inequality

with respect to the L1 -norm. This criterion provides the existence of a (ex-

plicitly determined) critical threshold determining the interval of volumes for
which the ball is a local minimizer. Finally we deduce that for small masses

the ball is also the unique global minimizer, and that for small exponents α

in the nonlocal term the ball is the unique minimizer as long as the problem
has a solution.

This paper reports the content of a talk given by the second author at the XXV
Convegno Nazionale di Calcolo delle Variazioni (Levico Terme, 02-06/02/2015).

1. Introduction

In these notes we review the main results and ideas of the paper [3], where the
full details and proofs can be found. For a parameter α ∈ (0, N − 1), N ≥ 2, we
consider the following functional defined on measurable sets E ⊂ RN :

(1.1) Fα(E) := P(E) +

∫
RN

∫
RN

χE(x)χE(y)

|x− y|α
dxdy ,

where P(E) is the perimeter of the set E and the second term, the so called
nonlocal term, will be hereafter denoted by NLα(E). We are interested in the
study of the volume constrained minimization problem

(1.2) min{Fα(E) : |E| = m} ,
and in its dependence on the parameters α and m > 0.

The reason why the above problem is interesting lies in the fact that the en-
ergy (1.1) appears in the modeling of different physical phenomena. The most
physically relevant case is in three dimensions with α = 1, where the nonlocal
term corresponds to a Coulombic repulsive interaction: one of the first examples
is the celebrated Gamow’s water-drop model for the constitution of the atomic
nucleus (see [14]), and energies of this kind are also related (via Γ-convergence) to
the Ohta-Kawasaki model for diblock copolymers (see [7, 8, 27]). For the reader
interested in a more specific account on the physical background of this kind of
problems, we suggest to read [25].

From a mathematical point of view, functionals of the form (1.1) recently drew
the attention of many authors (see for example [1, 10, 12, 16, 17, 18, 21, 22, 20,
24, 26]). The main feature of the energy (1.1) is the presence of two competing
terms, the sharp interface energy and the long-range repulsive interaction. Indeed,
while the first term is minimized by the ball (by the isoperimetric inequality), the
nonlocal term is in fact maximized by the ball, as a consequence of the Riesz’s
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rearrangement inequality (see [23, Theorem 3.7]), and favours scattered configu-
rations. Hence, due to the presence of this competition in the structure of the
problem, the minimization of Fα is highly non trivial.

In order to have an idea of the behaviour we would expect for such a functional,

we notice that, calling Ẽ :=
(
|B1|
|E|

) 1
N

E , where B1 is the unit ball of RN , the

functional reads as

Fα(E) =

(
|E|
|B1|

)N−1
N [
P(Ẽ) +

(
m

|B1|

)N−α+1
N

NLα(Ẽ)
]
.

Hence the parameter m appearing in the volume constraint can be normalized
and replaced by a coefficient γ in front of the nonlocal energy: one can study the
minimization problem, equivalent to (1.2),

(1.3) min{Fα,γ(E) : |E| = |B1|} ,

where we define Fα,γ(E) := P(E) + γNLα(E). It is clear from this expression
that, for small masses (i.e. small γ ’s), the interfacial energy is the leading term
and this suggests that in this case the functional should behave like the perimeter,
namely we expect the ball to be the unique solution of the minimization problem,
as in the isoperimetric problem; on the other hand, for large masses the nonlocal
term becomes prevalent and causes the existence of a solution to be not guaranteed.
But this is just heuristic!

What was proved, in some particular cases, is that the functional Fα is uniquely
minimized (up to translations) by the ball for every value of the volume below a
critical threshold: in the planar case in [21], in the case 3 ≤ N ≤ 7 in [22], and in
any dimension N with α = N−2 in [18]. Moreover, the existence of a critical mass
above which the minimum problem does not admit a solution was established in
[21] in dimension N = 2, in [22] for every dimension and for exponents α ∈ (0, 2),
and in [24] in the physical interesting case N = 3, α = 1.

In [3] we provide a contribution to a more detailed picture of the nature of
the minimization problem (1.2). In particular, we follow the approach used in [1]
for the periodic case with α = N − 2, which is based on the positivity of the
second variation of the functional, in order to obtain a local minimality criterion.
This allows us to show the following new results: first, we prove that the ball is
the unique global minimizer for small masses, for every values of the parameters
N and α (Theorem 3.2); moreover, for α small we also show that the ball is
the unique global minimizer, as long as a minimizer exists (Theorem 3.3), and
that in this regime we can write (0,∞) = ∪k(mk,mk+1] , with mk+1 > mk , in
such a way that for m ∈ [mk−1,mk] a minimizing sequence for the functional is
given by a configuration of at most k disjoint balls with diverging mutual distance
(Theorem 3.4). Finally, we also investigate the issue of local minimizers, that is,
sets which minimize the energy with respect to competitors sufficiently close in
the L1 -sense (where we measure the distance between two sets by the quantity
(2.2), which takes into account the translation invariance of the functional). We
show the existence of a volume threshold below which the ball is an isolated local
minimizer, determining it explicitly in the three dimensional case with a Newtonian
potential (Theorem 3.1). The energy landscape of the functional Fα , including
the information coming from our analysis and from previous works, is illustrated
in Figure 1.

After our work was completed, a deep analysis comprising also the case α ∈
[N − 1, N), and including the possibility for the perimeter term to be a nonlocal
s-perimeter, has been performed in the paper [11].
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Figure 1. Energy landscape of the functional Fα,γ .

2. The local minimality criterion

The issue of existence and characterization of global minimizers of the problem

(2.1) min
{
Fα(E) : E ⊂ RN , |E| = m

}
,

for m > 0, is not at all an easy task. A principal source of difficulty in applying the
direct method of the Calculus of Variations comes from the lack of compactness
of the space with respect to L1 convergence of sets (with respect to which the
functional is lower semicontinuous). It is in fact well known that the minimum
problem (2.1) does not admit a solution for certain ranges of masses.

Besides the notion of global minimality, we will address also the study of sets
which minimize locally the functional with respect to small volume perturbations.
Since the functional is translation invariant, we will measure the L1 -distance of
two sets modulo translations by the distance

(2.2) α(E,F ) := min
x∈RN

|E4(x+ F )| ,

where 4 denotes the symmetric difference of two sets.

Definition 2.1. We say that E ⊂ RN is a local minimizer for the functional (1.1)
if there exists δ > 0 such that

Fα(E) ≤ Fα(F )

for every F ⊂ RN such that |F | = |E| and α(E,F ) ≤ δ . We say that E is an
isolated local minimizer if the previous inequality is strict whenever α(E,F ) > 0.

An important feature of the energy is the Lipschitzianity of the nonlocal term,
that allows us to treat it as a bulk perturbation of the area functional (see [3,
Proposition 2.3]).

Proposition 2.2 (Lipschitzianity of the nonlocal term). Given ᾱ ∈ (0, N − 1)
and m ∈ (0,+∞) , there exists a constant c0 , depending only on N, ᾱ and m
such that if E,F ⊂ RN are measurable sets with |E|, |F | ≤ m then

|NLα(E)−NLα(F )| ≤ c0|E4F |

for every α ≤ ᾱ .
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The above observation is essential in proving some regularity properties of local
and global minimizers, which are mostly known (see, for instance, [22] and [24] for
global minimizers, and [1] for local minimizers in a periodic setting). The basic
idea is to show that a minimizer solves a suitable penalized minimum problem,
where the volume constraint is replaced by a penalization term in the functional,
and to deduce that a quasi-minimality property is satisfied. For a proof, see [3,
Theorem 2.7].

Theorem 2.3. Let E ⊂ RN be a global or local minimizer for the functional
(1.1) with volume |E| = m . Then the reduced boundary ∂∗E is a C3,β -manifold
for all β < N − α − 1 , and the Hausdorff dimension of the singular set satisfies
dimH(∂E \ ∂∗E) ≤ N − 8 . Moreover, E is (essentially) bounded. Finally, every
local minimizer has at most a finite number of connected components and every
global minimizer E is connected in a measure theoretic sense, i.e. if for a ball BR
we have |E ∩BR| > 0 and |E\BR| > 0 , then HN−1(∂BR ∩ E) 6= 0 .

As anticipated above, our method follows a second variation approach which
has been recently developed and applied to different variational problems, whose
common feature is the fact that the energy functionals are characterized by the
competition between bulk energies and surface energies (see, for instance, [13]
in the context of epitaxially strained elastic films, [5, 4] for the Mumford-Shah
functional, [6] for a variational model for cavities in elastic bodies). In particular
we stress the attention on [1], which deals with energies in the form (1.1) in a
periodic setting (see also [19], where the same problem is considered in an open
set with Neumann boundary conditions).

The basic idea is to associate with the second variation of Fα at a regular
critical set E (see Definition 2.6), a quadratic form defined on the functions ϕ ∈
H1(∂E) such that

∫
∂E

ϕ = 0, whose non-negativity is easily seen to be a necessary
condition for local minimality. In our main result (Theorem 2.11) we show that
the strict positivity of this quadratic form is in fact sufficient for local minimality.

The general strategy for the proof of this minimality criterion is the one de-
veloped in [1]. But in our case we have to fix some technical details due to the
main differences between the two problems: the fact the α is generic and the non
compactness of our domain.

Since we need to use first and second variations, we briefly recall their defini-
tions.

Definition 2.4. Let X : RN → RN be a C2 vector field. We define the admissible
flow associated to X as the function Φ : RN×(−1, 1)→ RN given by the equations

∂Φ

∂t
= X(Φ) , Φ(x, 0) = x .

As for the case of the perimeter, we will use these admissible flows to compute
the variations of our functional.

Definition 2.5. Let E ⊂ RN be a set of class C2 , and let Φ be an admissible
flow. We define the first and second variation of Fα at E with respect to the flow
Φ to be

d

dt
Fα(Et)|t=0

and
d2

dt2
Fα(Et)|t=0

respectively, where we set Et := Φt(E).

The first order condition for minimality, coming from the first variation of
the functional, requires a C2 -minimizer E (local or global) to satisfy the Euler-
Lagrange equation

(2.3) H∂E(x) + 2vE(x) = λ for every x ∈ ∂E ,
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for some constant λ which plays the role of a Lagrange multiplier associated with
the volume constraint. Here H∂E := divτνE(x) denotes the sum of the principal
curvatures of ∂E (divτ is the tangential divergence on ∂E and νE denotes the
exterior unit normal to ∂E ), and vE(x) :=

∫
E

1
|x−y|α dy . Following [1], we define

critical sets as those satisfying (2.3) in a weak sense, for which further regularity
can be gained a posteriori (see Remark 2.7).

Definition 2.6. We say that E ⊂ RN is a regular critical set for the functional
(1.1) if E is of class C1 and (2.3) holds weakly on ∂E , i.e.,∫

∂E

divτζ dHN−1 = −2

∫
∂E

vE 〈ζ, νE〉dHN−1

for every ζ ∈ C1(RN ;RN ) such that
∫
∂E
〈ζ, νE〉dHN−1 = 0.

Remark 2.7. By standard regularity (see, e.g., [2, Proposition 7.56 and Theo-
rem 7.57]) a critical set E is of class W 2,2 and C1,β for all β ∈ (0, 1). In turn it
can be proved, by using Schauder estimates (see [15, Theorem 9.19]), that E is of
class C3,β for all β ∈ (0, N − α− 1).

Remark 2.8. Notice that for a ball B we have that vB is constant on ∂B . Thus
every ball is a regular critical set for the functional (1.1).

The second variation of the functional Fα on a C2 -regular set E , computed in
[3, Theorem 3.3], reads as follows:

d2

dt2
Fα(Et)|t=0

= ∂2Fα(E)[〈X, νE〉] +R ,

where νE is the outer normal to ∂E , R is a term that vanishes on regular critical

sets and ∂2Fα(E) is the quadratic form defined for ϕ ∈ H̃1(∂E) by

∂2Fα(E)[ϕ] =

∫
∂E

(
|Dτϕ|2 − |B∂E |2ϕ2

)
dHN−1 + 2

∫
∂E

(∂νEvE)ϕ2 dHN−1

+ 2

∫
∂E

∫
∂E

ϕ(x)ϕ(y)

|x− y|α
dHN−1(x)dHN−1(y) ,

(2.4)

where Dτ denotes the tangential derivative on ∂E , B∂E := DτνE is the second
fundamental form of ∂E and, recalling that we always have to take into account
the volume constraint, we introduce the space

H̃1(∂E) :=

{
ϕ ∈ H1(∂E) :

∫
∂E

ϕdHN−1 = 0

}
,

endowed with the norm ‖ϕ‖H̃1(∂E) := ‖∇ϕ‖L2(∂E) .

Notice that if E is a regular critical set and Φ preserves the volume of E , then

∂2Fα(E)[〈X, ν〉] =
d2Fα(Et)

dt2

∣∣∣∣
t=0

.

This fact suggests that at a regular local minimizer the quadratic form (2.4) must

be nonnegative on the space H̃1(∂E). This is the content of the following corollary.

Corollary 2.9. Let E be a local minimizer of Fα of class C2 . Then

∂2Fα(E)[ϕ] ≥ 0 for all ϕ ∈ H̃1(∂E) .

Now we want to look for a sufficient condition for local minimality. First of
all we notice that, since the functional is translation invariant, if we compute the
second variation of Fα at a regular set E with respect to a flow of the form
Φ(x, t) := x + tηei , where η ∈ R and ei is an element of the canonical basis of
RN and νi := 〈νE , ei〉 , we obtain that

∂2Fα(E)[ηνi] =
d2

dt2
Fα(Et)|t=0

= 0 .
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Following [1], since we aim to prove that the strict positivity of the second variation
is a sufficient condition for local minimality, we shall exclude the finite dimensional

subspace of H̃1(∂E) generated by the functions νi , which we denote by T (∂E).
Hence we split

H̃1(∂E) = T⊥(∂E)⊕ T (∂E) ,

where T⊥(∂E) is the orthogonal complement to T (∂E) in the L2 -sense, i.e.,

T⊥(∂E) :=

{
ϕ ∈ H̃1(∂E) :

∫
∂E

ϕνi dHN−1 = 0 for each i = 1, . . . , N

}
.

It can be shown (see [1]) that there exists an orthonormal frame (ε1, . . . , εN ) such
that ∫

∂E

〈ν, εi〉〈ν, εj〉dHN−1 = 0 for all i 6= j ,

so that the projection on T⊥(∂E) of a function ϕ ∈ H̃1(∂E) is

πT⊥(∂E)(ϕ) = ϕ−
N∑
i=1

(∫
∂E

ϕ〈ν, εi〉dHN−1
)

〈ν, εi〉
‖〈ν, εi〉‖2L2(∂E)

(notice that 〈ν, εi〉 6≡ 0 for every i , since on the contrary the set E would be
translation invariant in the direction εi ).

Definition 2.10. We say that Fα has positive second variation at the regular
critical set E if

∂2Fα(E)[ϕ] > 0 for all ϕ ∈ T⊥(∂E)\{0}.

We are now ready to state the main results of [3], which provides a sufficiency
local minimality criterion based on the second variation of the functional.

Theorem 2.11. Assume that E is a regular critical set for Fα with compact
boundary and with positive second variation, in the sense of Definition 2.10. Then
there exist δ > 0 and C > 0 such that

(2.5) Fα(F ) ≥ Fα(E) + C
(
α(E,F )

)2
for every F ⊂ RN such that |F | = |E| and α(E,F ) < δ .

Idea of the proof. The proof consists of two main steps.

Step 1: W 2,p -local minimality. In this first step we want to prove that the pos-
itivity of the second variation allows to show that a critical C2 set E is a local
minimum in the W 2,p -topology, for p > max{2, N − 1} , in the sense that it has
smaller energy than any set F whose boundary can be written as a normal graph
over ∂E with a function with W 2,p -norm small enough. For, the idea is to ex-
ploit the construction provided by [1, Theorem 3.7] in order to connect E and F
with a sequence of sets (Et)t ∈ [0, 1], given by the evolution of E through the
flow generated by a vector field X ∈ C2(RN ;RN ), in such a way that E0 = E ,
E1 = F and |Et| = m . Calling g(t) := Fα(Et) and recalling that by criticality of
E we have g′(0) = 0, we can write

Fα(F )−Fα(E) = g(1)− g(0) =

∫ 1

0

(1− t)g′′(t) dt ,

where

g′′(t) =
d2Fα(Es)

ds2 |s=t
= ∂2Fα(Et)[〈X, νEt〉] +Rt .
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Since by hypothesis ∂2Fα(E) is a positive quadratic form, it can be proved that
it is indeed uniformly positive, that is there exists δ1 > 0 such that if ∂F =
{x+ ψ(x)νE(x) : x ∈ ∂E} with |F | = |E| and ‖ψ‖W 2,p(∂E) ≤ δ1 , then

inf

{
∂2Fα(F )[ϕ] : ϕ ∈ H̃1(∂F ), ‖ϕ‖H̃1(∂F ) = 1,

∣∣∣ ∫
∂F

ϕνF dHN−1
∣∣∣ ≤ δ1} ≥ m0

2
,

for a costant m0 > 0 depending on E . Moreover, given ε > 0, it is possible to
find δ2 > 0 such that if ‖ψ‖W 2,p(∂E) ≤ δ2 , then we can estimate the reminder as

|Rt| ≤ Cε‖〈X, νEt〉‖2L2(∂Et)
. Thus, choosing ε sufficiently small we obtain that:

Fα(F )−Fα(E) ≥ C
∫ 1

0

(1− t)‖〈X, νEt〉‖2L2(∂Et)
dt .

Finally it is also possible to prove that ‖〈X, νEt〉‖2L2(∂Et)
≥ ‖〈X, νE〉‖2L2(∂E) . We

have thus proved an isolated local minmality result in W 2,p for a regular critical
set with positive second variation.

Step 2: W 2,p -local minimality implies L1 -local minimality. The idea of this second
step goes back to [13], [9], [1] and relies on the following result, observed by White
in [28]:

Theorem 2.12. Let En ⊂ RN be a sequence of Λ-minimizers of the area func-
tional such that

sup
n
P(En) < +∞ and χEn → χE in L1(RN )

for some bounded set E of class C2 . Then for n large enough En is of class C1, 12

and
∂En = {x+ ψn(x)νE(x) : x ∈ ∂E},

with ψn → 0 in C1,β(∂E) for all β ∈ (0, 12 ) .

What we have is a local minimality result on the W 2,p -topology, and we would
like to extend it to the L1 -topology. We argue by contradiction and we take a
sequence of sets (En)n with |En| = |E| , En → E in L1 ,

Fα(En) ≤ Fα(E) ,

and we would like to use the previous step to conclude. The problem is that, while
the first one is local in space, the former one can happen also at infinity, namely
we can have that En \Bn 6= Ø, where Bn is the ball of radius n . So the fist step
seems to be useless. The brillant idea of the above cited papers was to use the sets
En ’s to construct a new sequence of sets (Fn)n such that |Fn| = |E| , Fn → E in
L1 but with the additional property of being a uniform sequence of Λ-minimizers
(because they are selected as solution to a penalized minimum problem for the
energy (1.3)). In this way it is possible to apply Theorem 2.12 to this sequence to

infer that in fact the Fn ’s are of class C1, 12 and they converge to E in the C1,β

sense. Now, using the Euler-Lagrange equation for the penalized problem solved
by Fn , it is possible to gain the W 2,p -convergence of the sets Fn ’s to E . This
will give the desired contradiction and thus allows us to conclude the proof of the
theorem. �

3. Results

The local minimality criterion in Theorem 2.11 can be applied to obtain infor-
mation about local and global minimizers of the functional (1.1). We start with
the following theorem (see [3, Theorem 2.9]), which shows the existence of a criti-
cal mass mloc such that the ball BR is an isolated local minimizer if |BR| < mloc ,
but is no longer a local minimizer for larger masses. We also determine explicitly
the volume threshold in the three-dimensional case with a Newtonian potential.
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Theorem 3.1 (Local minimality of the ball). Given N ≥ 2 and α ∈ (0, N − 1) ,
there exists a critical threshold mloc = mloc(N,α) > 0 such that the ball BR is an
isolated local minimizer for Fα , in the sense of Definition 2.1, if 0 < |BR| < mloc .
If |BR| > mloc , there exists E ⊂ RN with |E| = |BR| and α(E,BR) arbitrarily
small such that Fα(E) < Fα(BR) .
In particular for dimension N = 3 we have that

mloc(3, α) = π

(
(6− α)(4− α)

23−ααπ

) 3
4−α

.

Finally mloc(N,α)→∞ as α→ 0+ .

Our local minimality criterion allows us to deduce further properties about
global minimizers. The first result [3, Theorem 2.10] states that the ball is the
unique global minimizer of the functional for small masses. Even if this result
was already known in the literature in some particular cases (see [18] for the case
α = N − 2, [21] for the case N = 2, and [22] for the case 3 ≤ N ≤ 7), we provide
an alternative proof which removes the dimensional constraint based on the second
variation approach.

Theorem 3.2 (Global minimality of the ball). Let mglob(N,α) be the supremum
of the masses m > 0 such that the ball of mass m is a global minimizer of Fα
in dimension N . Then it holds that 0 < mglob(N,α) < ∞ and that the ball BR
with |BR| = m is a local minimizer of Fα if m ≤ mglob(N,α) . Moreover it is the
unique global minimizer of Fα if m < mglob(N,α) .

Idea of the proof. We need to prove three facts:

• mglob(N,α) <∞ ,
• mglob(N,α) > 0 and the ball BR with |BR| = m is a local minimizer of
Fα if m ≤ mglob(N,α, γ),

• it is the unique global minimizer of Fα if m < mglob(N,α).

The fact that mglob(N,α) <∞ follows directly from the previous theorem (Theo-
rem 3.1), since the critical threshold mloc of local minimality of the ball is always
finite. Here we would like to give an idea of the proof of the second fact, since the
proof of the third one is similar.

In the following we will work with the functional Fα,γ defined in (1.3). Suppose
by contradiction that there exist a sequence γn → 0 and a sequence of sets (En)n
with |En| = |B1| such that

Fα,γn(En) ≤ Fα,γn(B1) .

Since the above inequality can be written as

P(En)− P(B1) ≤ γn
(
NLα(B1)−NLα(En)

)
,

using the quantitative isoperimetric inequality (recall that |En| = |B1| for all n)
to estimate from below the left-hand side and the Lipschitzianity of the nonlocal
term (see Proposition 2.2) to estimate the right-hand side from above, we obtain

C|En4B1|2 ≤ γnc0|En4B1| .
Since γn → 0 we obtain that En → B1 in L1 . But this implies, using Theorem
3.1, that there exists n̄ ∈ N such that En = B1 for all n ≥ n̄ . �

In the following theorems we analyze the global minimality issue for α close
to 0, showing in particular that in this case the unique minimizer, as long as a
minimizer exists, is the ball [3, Theorem 2.11], and characterizing the infimum of
the energy when the problem does not have a solution [3, Theorem 2.12]. These
results are completely new (except the first one, proved for the special case of
dimension N = 2 in [21]).
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Theorem 3.3 (Full characterization of global minimizers for α small). There
exists a critical exponent ᾱ = ᾱ(N) > 0 such that for every α < ᾱ the ball
with volume m is the unique (up to translations) global minimizer of Fα if m ≤
mglob(N,α) , while for m > mglob(N,α) the minimum problem for Fα does not
have a solution.

Idea of the proof. The proof is similar to the one of Theorem 3.2: indeed suppose
by contradiction that there exist sequences αn → 0, γn > 0 and sets (En)n with
|En| = |B1| such that

Fαn,γn(En) ≤ Fαn,γn(B1) ,

which can be rewritten as before as

P(En)− P(B1) ≤ γn
(
NLαn(B1)−NLαn(En)

)
.

Using the quantitative isoperimetric inequality to estimate from below the left-
hand side, and recalling that we can suppose the γn ’s to be bounded from above
by a constant γ̄ (since it is known that for α < 2 there exists a bounded threshold
above which the ball is no longer a global minimizer), we infer that

C|En4B1|2 ≤ γ̄
(
NLαn(B1)−NLαn(En)

)
.

Now it is easy to show that the right-hand side goes to 0 for αn → 0. Thus
En → B1 in L1 . Finally, looking carefully at the proof leading to Theorem 2.11,
it can be proved that the result is uniform in α and γ : namely given ᾱ, γ̄ > 0
there exists δ > 0 such that

Fα,γ(E) > Fα,γ(B1) ,

for each α < ᾱ , γ < γ̄ and each set E ⊂ RN with |E| = |B1| and 0 < α(E,B1) <
δ . This observation allows us to conclude the proof of the theorem. �

Theorem 3.4 (Minimizing sequences for α small). Let α < ᾱ (where ᾱ is given
by Theorem 3.3) and let

fk(m) := min
µ1,...,µk≥0

µ1+...+µk=m

{ k∑
j=1

Fα(Bi) : Bi ball, |Bi| = µi

}
.

There exists an increasing sequence (mk)k , with m0 = 0 , m1 = mglob , such that
limkmk =∞ and

(3.1) inf
|E|=m

Fα(E) = fk(m) for every m ∈ [mk−1,mk], for all k ∈ N,

that is, for every m ∈ [mk−1,mk] a minimizing sequence for the total energy
is obtained by a configuration of at most k disjoint balls with diverging mutual
distance. Moreover, the number of non-degenerate balls tends to +∞ as m →
+∞ .

Remark 3.5. Since mloc(N,α)→ +∞ as α→ 0+ and the non-existence thresh-
old is known to be uniformly bounded for α ∈ (0, 1), we immediately deduce that
we have mglob(N,α) < mloc(N,α), for α small. Moreover, by comparing the en-
ergy of a ball of volume m with the energy of two disjoint balls of volume m

2 , and
sending to infinity the distance between the balls, we deduce after a straightfor-
ward computation (and estimating NLα(B1) ≥ ω2

N2−α ) that the following upper
bound for the global minimality threshold of the ball holds:

mglob(N,α, γ) < ωN

(
2αN(2

1
N − 1)

ωNγ(1− ( 1
2 )

N−α
N )

) N
N+1−α

.



10

Hence, by comparing this value with the explicit expression of mloc in the physical
interesting case N = 3, α = 1 (see Theorem 3.1), we deduce that mglob(3, 1) <
mloc(3, 1).

4. Open problems

There are several open problems regarding this functional. An important issue
that remains unsolved is concerned with the structure of the set of masses for
which the problem does not have a solution: is it always true that it has the form
(m,+∞) for all the values of α and N ? Notice that we provide a positive answer
to this question in the case where α is small. Finally, another interesting question
asks if there are other global (or local) minimizers different from the ball, and in
the affirmative case, to provide some information about these minima.
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