We consider a nonlocal isoperimetric problem defined in the whole space RN , whose nonlocal part is given by a Riesz potential with exponent α ⋯ (0,N - 1). We show that critical configurations with positive second variation are local minimizers and satisfy a quantitative inequality with respect to the L1 -norm. This criterion provides the existence of an (explicitly determined) critical threshold determining the interval of volumes for which the ball is a local minimizer, and it allows us to address several global minimality issues.
Local and global minimality results for a nonlocal isoperimetric problem on RN / Bonacini, Marco; Cristoferi, Riccardo. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - 2014, 46:4(2014), pp. 2310-2349. [10.1137/130929898]
Local and global minimality results for a nonlocal isoperimetric problem on RN
Bonacini, Marco;
2014-01-01
Abstract
We consider a nonlocal isoperimetric problem defined in the whole space RN , whose nonlocal part is given by a Riesz potential with exponent α ⋯ (0,N - 1). We show that critical configurations with positive second variation are local minimizers and satisfy a quantitative inequality with respect to the L1 -norm. This criterion provides the existence of an (explicitly determined) critical threshold determining the interval of volumes for which the ball is a local minimizer, and it allows us to address several global minimality issues.File | Dimensione | Formato | |
---|---|---|---|
Bonacini - Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem in R^N.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
464.2 kB
Formato
Adobe PDF
|
464.2 kB | Adobe PDF | Visualizza/Apri |
Bonacini - Cristoferi, Local and global minimality results for a nonlocal isoperimetric problem in R^N.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
471.19 kB
Formato
Adobe PDF
|
471.19 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione