Principal component analysis (PCA) is a powerful data reduction method for Structural Health Monitoring. However, its computational cost and data memory footprint pose a significant challenge when PCA has to run on limited capability embedded platforms in low-cost IoT gateways. This paper presents a memory-efficient parallel implementation of the streaming History PCA algorithm. On our dataset, it achieves 10x compression factor and 59x memory reduction with less than 0.15 dB degradation in the reconstructed signal-to-noise ratio (RSNR) compared to standard PCA. Moreover, the algorithm benefits from parallelization on multiple cores, achieving a maximum speedup of 4.8x on Samsung ARTIK 710.

Embedding principal component analysis for data reduction in structural health monitoring on low-cost IoT gateways / Burrello, Alessio; Marchioni, Alex; Brunelli, Davide; Benini, Luca. - ELETTRONICO. - (2019), pp. 235-239. (Intervento presentato al convegno CF '19 tenutosi a Alghero, Italy nel April 30 - May 02, 2019) [10.1145/3310273.3322822].

Embedding principal component analysis for data reduction in structural health monitoring on low-cost IoT gateways

Brunelli, Davide;
2019-01-01

Abstract

Principal component analysis (PCA) is a powerful data reduction method for Structural Health Monitoring. However, its computational cost and data memory footprint pose a significant challenge when PCA has to run on limited capability embedded platforms in low-cost IoT gateways. This paper presents a memory-efficient parallel implementation of the streaming History PCA algorithm. On our dataset, it achieves 10x compression factor and 59x memory reduction with less than 0.15 dB degradation in the reconstructed signal-to-noise ratio (RSNR) compared to standard PCA. Moreover, the algorithm benefits from parallelization on multiple cores, achieving a maximum speedup of 4.8x on Samsung ARTIK 710.
2019
CF '19 Proceedings of the 16th ACM International Conference on Computing Frontiers
New York, NY, USA
ACM
9781450366854
Burrello, Alessio; Marchioni, Alex; Brunelli, Davide; Benini, Luca
Embedding principal component analysis for data reduction in structural health monitoring on low-cost IoT gateways / Burrello, Alessio; Marchioni, Alex; Brunelli, Davide; Benini, Luca. - ELETTRONICO. - (2019), pp. 235-239. (Intervento presentato al convegno CF '19 tenutosi a Alghero, Italy nel April 30 - May 02, 2019) [10.1145/3310273.3322822].
File in questo prodotto:
File Dimensione Formato  
CF2019_HPCA_PersonalVersionIRIS.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 970.51 kB
Formato Adobe PDF
970.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/236473
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact