
Embedding Principal Component Analysis for Data Reduction
in Structural Health Monitoring on Low-Cost IoT Gateways

Alessio Burrello∗
Alex Marchioni∗

alessio.burrello@unibo.it
alex.marchioni@unibo.it
DEI, University of Bologna

Bologna, Italy

Davide Brunelli
davide.brunelli@unitn.it
DII, University of Trento

Trento, Italy

Luca Benini
lbenini@iis.ee.ethz.ch

DEI, University of Bologna
Bologna, Italy
IIS, ETH Zurich

Zurich, Switzerland

ABSTRACT
Principal component analysis (PCA) is a powerful data reduction
method for Structural Health Monitoring. However, its computa-
tional cost and data memory footprint pose a significant challenge
when PCA has to run on limited capability embedded platforms
in low-cost IoT gateways. This paper presents a memory-efficient
parallel implementation of the streaming History PCA algorithm.
On our dataset, it achieves 10× compression factor and 59×memory
reduction with less than 0.15 dB degradation in the reconstructed
signal-to-noise ratio (RSNR) compared to standard PCA. More-
over, the algorithm benefits from parallelization on multiple cores,
achieving a maximum speedup of 4.8× on Samsung ARTIK 710.

KEYWORDS
Embedded platforms, Streaming PCA, Structural HealthMonitoring,
Edge computing, IoT

1 INTRODUCTION
The Internet of Things (IoT) envisions billions of devices that can
sense, compute and potentially communicate with users or among
them (machine-to-machine) [22]. The IoT involves large sensors
and devices networks and poses new challenges in finding innova-
tive and scalable approaches to collect and to process the potentially
huge amount of data. A very promising IoT application is Struc-
tural Health Monitoring (SHM) [2, 24] whose aim is to provide
information about the building conditions. To improve the main-
tainability of large structures such as space vehicles [10], masonry
buildings [4], or bridges [20], large sensors networks are installed
and supervised by local gateways. These monitoring systems con-
tinuously acquire and transmit data to a central unit for storage and
processing purposes. Depending on the scenario, a single gateway
manages the data flow from a group of sensors, with a possible
focus on either the sensors-gateway communication, as in [5, 19],
or on the link from the gateway to the main processor [13, 14].

Even though the role of the central unit is often played by a
cloud platform [6], the distribution of the processing to the edge
of the cloud, i.e. by including gateways and sensors in the data
processing chain, has demonstrated several advantages such as
improved security, reduced latency and lower costs [23].

In this framework, reducing the cloud storage space and the
network traffic from the gateway to the cloud is extremely useful
in many application scenarios [1]. Therefore, a compression algo-
rithm running on the gateway is required. Among compression
∗Authors contributed equally to this research.

approaches, methods based on the Principal Component Analy-
sis [11] (PCA) are drawing attention in the processing of large
dataset [25]. For these class of methods, the dimensionality reduc-
tion is achieved by exploiting the correlation between data features.
As a counterpart, an accurate estimation of the signal correlation
requires greater memory and computational resources compared
to other techniques [15]. This gap is partially filled by the recently
emerging streaming approaches [3, 9, 16, 26], that, with a lower
memory footprint, exhibit a high accuracy in the correlation es-
timation. Particularly, the History PCA [26] is demonstrated to
outperform other streaming approaches. In details, the History
PCA has already been tested on four different large-scale public
datasets (NIPS and NYTimes from UCI data, and RCV1, KDDB from
LIBSVM data sets as presented in [26]) achieving a lower approxi-
mation error compared to other algorithms. History PCA achieves
an approximation error (difference between the computed eigen-
values and the PCA eigenvalues) lower than 10−6, which is well
suited for many tasks like anomaly detection or spectral analysis.

Tests conducted in [12, 21] explore PCA solutions to reduce
the traffic load exploiting spatial correlation among sensors. One
alternative solution to enhance the compression is to exploit the
autocorrelation of the single sensor time series. This allows to treat
the sensor as a unique entity, running a single PCA instance for
each sensor.

In this paper we tackle the challenge of embedding PCA compres-
sion on low-cost IoT gateways, and we address two key limitations
of these HW platforms, namely: limited on-board memory and low
computational power. We describe the following contributions:
• We present the application of the History PCA on a real-life
SHM problem, i.e. the monitoring of a viaduct. To the best of
our knowledge, this is the first attempt to embed the training
of a Principal Component Analysis algorithm on a large scale
sensor network on a low-cost gateway. We efficiently train our
algorithm on a single-sensor temporal series and we demonstrate
the suitability of the gateway to manage a 45 sensor (3-axis
accelerometers) network.
• Our HPCA implementation on an ARTIK 710 Module [7] with
8 cores achieves 4.8× training speed-up and 2.1× energy saving
compared to its single core execution. We also demonstrate that
the ARTIK 710 is superior to Raspberry Pi 3 [8], reaching 2.6×
higher speed-up with 1.2× energy reduction.
• We further investigate how different configurations of the His-
tory PCA could fit different memory constraints, showing that
we can save up to 59× memory.



The rest of the article is organized as follows: Sec. 2 presents
the PCA and the History PCA algorithm. Sec. 3 introduces our
dataset and describes the platforms. Finally, Sec. 4 discusses the
experimental results, while Sec. 5 concludes the paper with final
remarks.

2 HISTORY PCA
Given a dataset X ∈ Rd×N with d features and N instances, the
PCA consists in the eigen decomposition of the correlation matrix

Cx =
1
N
XX⊺ = QΛQ⊺ (1)

where Q ∈ Rd×d is an orthonormal matrix containing the column
eigenvectors of Cx and Λ = diag(λ1, . . . , λd) is the eigenvalues
matrix with λ1 ≥ λ2, ≥ . . . , ≥ λd .

Dimensionality reduction is obtained by projecting the signal
onto the k eigenvectors corresponding to the higher eignevalues.
The average reconstruction error is the sum of the eigenvalues
corresponding to the eigenvectors not involved in the projection.
Let x ∈ Rd be a signal instance, and x̂ its reconstruction, the
compression error is computed as:

Ex [∥x − x̂ ∥2] =
d∑

j=k+1
λj (2)

In this paper we apply the PCA-based compression to time series,
by representing signals as non-overlapping windows of d subse-
quent samples. Firstly, N signal instances are collected in order to
estimate the correlation matrixCx (Eq. 1). As a result, by following
Eq. 2, it is possible to fix the average compression error and deter-
mine the number of top eigenvectors involved in compression, k .
Then, each next incoming signal instance x ∈ Rd is compressed
by y = Q (k )⊺x , where Q (k ) ∈ Rd×k is the matrix with the top k

egenvectors. Eventually, signal recovery is obtained by x̂ = Q (k )y.
The classical approach entails to simultaneously store all the N

windows and then perform the PCA analysis, thereby demanding
for a large memory array. In contrast, the edge computing platforms
are tightly constrained by limited memory space. It is therefore
interesting to adopt streaming approaches [3, 9, 16, 17, 26], which
follow an incremental scheme to update the eigenvectors estimate
every new block of B instances, with B ≪ N . Among them, His-
tory PCA (HPCA) [26] has recently emerged. Based on the block
stochastic power method [16], HPCA aims to improve accuracy by
using more information about past signal instances.

The HPCA method is provided in Alg. 1 and it is deeply ex-
plained in [26]. The algorithm runs a new step τ every time a block
Xτ ∈ R

d×B is gathered updating the top k eigenvectors estimate
as columns ofQτ ∈ R

d×k . After n = N /B steps the method returns
the final estimate Qn .

The core of the algorithm is contained in line 13, which rep-
resents a generalization of the classical power method (ωτ ←
1
BXτX

⊺
τ ωτ−1 with ω as top eigenvector estimate). The second term

of the addition represents the power method of the current block
whereas the first contains the information extracted from the pre-
vious blocks; the two τ -based coefficients weight the terms so that
each block equally contributes to the final estimate. Besides, the QR
decomposition of line 14 is necessary to ensure the orthonormality

Algorithm 1 HPCA
1: Input: X1, . . . ,Xn , block-size: B.
2: S

(i )
0 ∼ N (0, Id×d ), 1 ≤ i ≤ k

3: Q1 ← QRdecomposit ion (S0)
4: for i ← 1, . . . ,m do
5: S1 ← Q1 +

1
BX1X

⊺
1 Q1

6: Q1, · ← QRdecomposit ion (S1)
7: end for
8: λj ← ∥S1[:, j]∥2 for j = 1, . . . ,k
9: Λ1 ← diaд(λ1, . . . , λk )
10: for τ ← 2, . . . ,n do
11: Qτ ← Qτ−1
12: for i ← 1, . . . ,m do
13: Sτ ←

τ−1
τ Qτ−1Λτ−1Q

⊺
τ−1Qτ +

1
τ

1
BXτX

⊺
τ Qτ

14: Qτ , · ← QRdecomposit ion (Sτ )
15: end for
16: λj ← ∥Sτ [:, j]∥2 for j = 1, . . . ,k
17: Λτ ← diaд(λ1, . . . , λk )
18: end for
19: Output: Qn

among the eigenvectors estimate. The repetition of these steps for
m times ensures the estimate to quickly converge to the actual
eigenvectors with good accuracy [26].

The computational cost of the HPCA is dominated by the matrix
multiplicationsO (dk (k +B)) and by the QR decompositionO (dk2).
Thememory occupancy is∼ O (d (k+B)), implying a gain of N/(B+k )
with respect to the classical PCA. With B = 1 the algorithm reaches
its lowest memory footprint.

These values are consistent with other streaming PCA algorithm
known in literature [3, 16, 18] which present complexityO (dk2) and
O (dk ) memory. The advantages of HPCA reside in the robustness
in the parameter tuning as shown in Section 4.1 and the improved
rate of convergence granted by the iteration of the internal loop as
demonstrated in [26].

Summarizing, the HPCA algorithm is characterized by the fol-
lowing parameters:
• signal dimension d : a high value of d allows greater com-
pression ratio, but introduces a delay equal to d/fs that could
not meet real-time requirements.
• rank k : the number of eigenvectors to estimate. It influences
the compression ratio CR = d/k and, consequently, the com-
pression quality.
• block size B: number of signal instances used in each step of
HPCA algorithm.
• number of repetitions of the HPCA internal loopm.

The computational cost of the HPCA is dominated by the matrix
multiplicationsO (dk (k +B)) and by the QR decompositionO (dk2).
Besides, the memory occupancy is ∼ O (d (k+B)), implying a gain of
N/(B+k ) with respect to the classical PCA. With B = 1 the algorithm
reaches its lowest memory footprint.

3 DATASET & PLATFORMS OVERVIEW
In this section, we describe the dataset, and the structural health
monitoring installation. Then, we introduce the Artik 710 module,

2



and the Raspberry Pi 3 platforms. We have chosen these two plat-
forms as representatives of the last generation of gateways for edge
computing.

3.1 Dataset
Our experiments target a structural health monitoring (SHM) instal-
lation on a viaduct which is monitored by 90 sensor nodes equipped
with a 3-axis accelerometer, temperature and humidity sensor. The
nodes sense the vibrations of the internal tendons in different sec-
tions with sample frequency fs = 100Hz. The readings are gathered
by two gateways which pack the data as 32-bit integer and send
it to the cloud for storage and analysis purposes. The PCA-based
compression is used to reduce bandwidth and storage space on the
cloud and it is applied independently to each time series produced
by each acceleration axis.

For our analysis, we use a dataset comprising a single-axis time
series of the accelerometer mounted on a sensor node. We consider
two traces, each one 12 hours long, acquired in two different days.
The former is used to estimate the top k eigenvectors while the
latter is needed to measure the performances in terms of quality
of reconstruction. As a figure of merit, we use the Reconstruction
Signal to Noise Ratio (RSNR) defined as:

RSNR =
∥x∥22
∥x − x̂∥22

where x is the signal instance and x̂ is the reconstructed instance
after compression.

3.2 Platforms overview
3.2.1 Raspberry Pi 3. The Raspberry Pi 3 Module B [8] (Rpi3) is a
single-board computer initially developed for teaching application.
Now, it is actively used in many fields such as robotics, smart sensor
control, and structural health monitoring. The board comprises the
Broadcom BCM2837 SoC, equipped with a 1.2 GHz 64-bit 4-core
Cortex A-53, and 1GB low power DDR2 clocked at 900 MHz.

3.2.2 Samsung Artik 710. The Samsung ARTIK 710 Module [7] is
an embedded computing System-in-Module targeted at high-end
gateways with local processing and analytics. It consists of a 8-core
64-bit ARM Cortex-A53 running at 1.4 GHz with 256KB shared
L2-Cache, and two 512MB DDR3 16-bit memory chips with 32-bit
memory interface, which provides a throughput of 6.4 GB/s.

We use the default power mode for all our experiments on the
Rpi 3 and on the Artik 710 Module, and an external Keithley 2400
SourceMeter SMU for power measurements.

4 RESULTS
The History PCA is implemented using optimized Numpy Python
3.5 library, relying on highly optimized BLAS and LAPACK libraries
for linear algebra computation. In the following, we first present
the reconstruction error and the tuning of parameters of the HPCA
algorithm on our dataset (Sec. 4.1). Then we analyze memory oc-
cupation, execution time (along with the parallelization speed up),
and energy consumption of the algorithm, on both the ARTIK 710
and the Rpi 3 introduced in Sec. 3.2 (Sec. 4.2).

Figure 1: Average RSNR depending on the number of HPCA
internal loopsm for different values of block-size BwithN =
8650 (12 hours), d = 500, k = 50.

a)

b)

Figure 2: In a) a signal instance comparedwith its reconstruc-
tions after compression based on both PCA (RSNR=20.39dB)
and HPCA (RSNR=20.31dB). b) shows the reconstruction er-
rors relative to the RMS value of the signal instance.

4.1 Use case: Vibration based SHM
To evaluate the performance of HPCA on our dataset, we fix d to
500 samples (corresponding to 5 s) and the compression quality to
20 dB. We consequently set k = 50 (CR = 10). The parameters B
andm are tuned to achieve the best performance.

Fig. 1 depicts the average RSNR with varying B andm. For low
values ofm the HPCA suffers from up to 3 dB RSNR loss compared
to PCA. Lower values of B emphasize the performance gap. By
increasingm to 3 or higher values, the RSNR difference reduces
to just 0.15 dB and becomes independent of the block-size B. This
result highlights the HPCA robustness to parameters variation and
it represents the main advantage of the HPCA with respect to the
other methods [3, 9, 16, 18] which need a fine parameter tuning.

We therefore fixm = 3 and B = 50.
On our test dataset, the HPCA achieves an average RSNR =

20.88 dB, almost matching the PCA performance (average RSNR =
20.95 dB). As we expect, varying the value of B from 1 to 500 does
not impair the HPCA performance (RSNR ∈ [20.85 dB, 20.90 dB]).
In Fig. 2 we report an example of signal instance and its reconstruc-
tions after compression. Noteworthy, the punctual reconstruction
error (defined as (x−x̂ )/∥x ∥2) of HPCA and PCA are highly corre-
lated, meaning that the vectors identified by the two algorithms
are practically the same.

3



Table 1: Performance of History PCA on Artik 710 versus
Raspberry Pi 3. Results refer to the execution with d = 5000,
B = 1, k = 500, m=3; MM, QR stand for matrix multiplication
and QR decomposition.

CORES [#] 1 2 4 8

Samsung ARTIK 710
time [s] 50.7 (1×) 28.0 (1.8×) 15.6 (3.3×) 10.5 (4.8×)
MM [s] 29.8 (1×) 16.5 (1.8×) 9.3 (3.2×) 5.4 (5.5×)
QR [s] 19.8 (1×) 11.4 (1.7×) 6.7 (3.0×) 5.1 (3.9×)

Rasberry Pi 3 Model B
time [s] 59.7 (1×) 34.8 (1.7×) 23.1 (2.6×) n.a.
MM [s] 37.7 (1×) 19.9 (1.9×) 12.6 (3.0×) n.a.
QR [s] 21.6 (1×) 14.6 (1.5×) 12.7 (1.7×) n.a.

4.2 Rpi & Artik Measurements
To measure the execution time, the parallelization speed-up and
the energy consumption of the algorithm on the two platforms,
we consider a single step of the algorithm, i.e. an iteration of the
τ -loop. To discuss the trade-off between memory and energy we
execute a full pass through all the training data.

In Table 1, we analyze the timing and the speed up of the algo-
rithm on both the ARTIK 710 and the Rpi3. For this experiment, we
decide to increase d to 5000 and maintain a CR of 10×, extending
our results to a more general scenario with a very high number of
features. With this setting, one HPCA step requires 50.7 s (59.7 s)
to run on single-core ARTIK 710 (Rpi3) and benefits of up to 4.8×
(2.6×) speed-up from parallelization. Note that the speed-up is
strongly limited by the QR decomposition, that nearly accounts for
50% of the execution time in the max-core configuration of both
platforms. Indeed, the QR decomposition relies on many sequential
steps, which implies a lower speed-up gain from multicore execu-
tion (3.9×/1.7× on Artik710/Rpi3). Furthermore, the lower speed up
achieved by the Rpi3 with equal parallelization (2.6× vs 3.3× with
4-cores) shows that the application is memory bound by the DDR2
lower throughput.

Fig. 3 further analyzes these aspects for different features’ num-
bers. As expected, both energy and time dramatically increase with
the number of features (the complexity is ∼ dk2, with k = d/10).
Moreover, the gap between execution time on Artik 710 and Rpi3
increases with the number of features, confirming that the DDR2
accesses limit the speed of the HPCA execution on Rpi3. With
d = 5000 the execution of the HPCA is 2.6× faster on the ARTIK
710 and achieves 1.2× energy saving. Overall, the parallelized ver-
sion of the HPCA on the Artik platform is executed in 21 % of the
total time needed for training with d = 5000 (10.5 s every 50 s of
signal acquisition), fitting well the real-time constraint given by
the 100 Hz sampling frequency; decreasing d to 500 reduces the
percentage to only 0.8 %, allowing the simultaneous training of
more sensors on a single gateway.

We also evaluate the scalability of the algorithm by increasing the
size of the block B with fixed value of k and d , respectively, 50 and
500. Note that a lower value of B implies lowermemory requirement
(memory ∼ O (d (k + B))), at the expense of a higher number of
steps n (n = N /B). More in details, the memory complexity of the

Figure 3: a) energy and b) time comparison ofHPCA running
on Artik 710 versus Raspberry Pi 3 (maximum core config-
uration) with varying number of features (d), k = d/10, B = 1
andm = 3.

HPCA algorithm is represented by

memHPCA = datasize × (3 × d × k + d × B + k × k )

where d × k and k × k represent the occupation of the intermediate
data to compute the Qτ matrix and d × B represents the input
Xi block. Hence, for B ≫ k , the memory occupation depends
linearly on B. On the other hand, increasing the value of B reduces
the number of Xi blocks, and consequently the number of steps
required by the HPCA to process the whole data needed for the
training. For instance, by doubling the block size, HPCA requires
10-20% more CPU-time per step, but the number of execution step
drops by 50%, i.e., an increase of B correspond to a decrease in the
energy required to complete the training.

Fig. 4 shows the trade-off between necessarymemory and energy
consumption. As previously exposed, for high values of B (B ≫ k)
the storage for the data block Xτ (Xτ ∈ Rd×B ) dominates the
memory occupation, while for B ≪ k , it is determined by the
matrices S andQτ (S,Qτ ∈ R

d×k ). By increasing B from 1 to 50, the
HPCA necessitates 1.5×memory (from 312 KB to 420 KB) and saves
almost 50× energy consumption on both the platforms, whereas still
increasing B to 512 causes further 3×memory occupation with only
5× more energy saving. Overall, setting B = 1 (minimum memory
footprint) allows a 59× memory reduction with respect to standard
PCA, moving from 18.3 MB to 312 KB. Moreover, managing our 45
sensor installation with 3 axes time series requires only 42.1 MB,
with respect to the 2.5 GB needed by PCA.

Fig. 4 also depicts the different energy consumption between the
two platforms. On a single-core, HPCA is compute bound and the
Artik module shows higher energy consumption due to the Artik
DDR3 RAM which is more power-hungry than the DDR2 mounted
on Rpi3. When we move to the multi-core execution, the bottleneck
becomes the memory access. The DDR3 in the Artik module grants
a quicker access to the RAM that allows the 8 cores to run more
efficiently, resulting in lower power consumption with respect to
the single-core configuration. Conversely, the DDR2 mounted on
RPi3 does not allow the 4 cores to exploit the maximum speed-up
since most of the time is spent in load-store operations and the
speed-up is not able to compensate the higher consumption due to
the multi-core execution.

4



Figure 4: Trade-off between energy consumption and mem-
ory occupation on Artik 710 and Raspberry Pi 3 after a full
pass over all the training data of the HPCA. Settings: d = 500,
k = 50, B ∈ [1, 512],m = 3.

5 CONCLUSION
This work presents accelerating History PCA on Artik 710 and on
Raspberry Pi 3, for data compression in a structural health moni-
toring system. We obtained the same performance of the standard
PCA (10× compression factor with 20 dB of average RSNR), with
59× lower memory footprint. We also compare the execution of the
algorithm on the two platforms for different values ofd , demonstrat-
ing that Artik 710 achieves 2.6× faster execution and 1.2× energy
reduction, with respect to Raspberry Pi 3.

Our future work will focus on moving the computation of the
HPCA on the single sensor under even tighter memory and com-
putational effort constraints.

6 ACKNOWLEDGMENTS
The research contribution presented in this paper has been funded
by a research grant of ST Microelectronics and by the Emilia Ro-
magna region Doctoral Program.

REFERENCES
[1] M. Aazam and E. Huh. 2014. Fog Computing and Smart Gateway Based Com-

munication for Cloud of Things. In 2014 International Conference on Future
Internet of Things and Cloud. 464–470. https://doi.org/10.1109/FiCloud.2014.83

[2] A. Abdelgawad and K. Yelamarthi. 2016. Structural health monitoring: Internet
of things application. In 2016 IEEE 59th International Midwest Symposium on
Circuits and Systems (MWSCAS). 1–4. https://doi.org/10.1109/MWSCAS.2016.
7870118

[3] Z. Allen-Zhu and Y. Li. 2017. First Efficient Convergence for Streaming k-PCA: A
Global, Gap-Free, and Near-Optimal Rate. In 2017 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS). 487–492. https://doi.org/10.1109/
FOCS.2017.51

[4] CemAyyildiz, H. Emre Erdem, Tamer Dirikgil, Oguz Dugenci, Taskin Kocak, Fatih
Altun, and V. Cagri Gungor. 2019. Structure health monitoring using wireless
sensor networks on structural elements. Ad Hoc Networks 82 (2019), 68 – 76.
https://doi.org/10.1016/j.adhoc.2018.06.011

[5] D. Bortolotti, M. Mangia, A. Bartolini, R. Rovatti, G. Setti, and L. Benini. 2018.
Energy-Aware Bio-Signal Compressed Sensing Reconstruction on the WBSN-
Gateway. IEEE Transactions on Emerging Topics in Computing 6, 3 (2018), 370–
381. https://doi.org/10.1109/TETC.2016.2564361

[6] A. Botta, W. de Donato, V. Persico, and A. PescapÃľ. 2014. On the Integration
of Cloud Computing and Internet of Things. In 2014 International Conference
on Future Internet of Things and Cloud. 23–30. https://doi.org/10.1109/FiCloud.
2014.14

[7] Samsung ARTIK 7 Family. 2016. Samsung ARTIK 710 IoT Module. (2016).
https://www.artik.io/modules/artik-710/

[8] Raspberry Pi Foundation. 2016. Raspberry Pi 3 Module B. (2016). https://www.
raspberrypi.org/documentation/hardware/raspberrypi/

[9] Moritz Hardt and Eric Price. 2014. The Noisy Power Method: A Meta Algo-
rithm with Applications. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 2 (NIPS’14). MIT Press, Cam-
bridge, MA, USA, 2861–2869. http://dl.acm.org/citation.cfm?id=2969033.2969146

[10] M. Hedley, N. Hoschke, M. Johnson, C. Lewis, A. Murdoch, D. Price, M.
Prokopenko, A. Scott, P. Wang, and A. Farmer. 2004. Sensor network for
structural health monitoring. In Proceedings of the 2004 Intelligent Sensors,
Sensor Networks and Information Processing Conference, 2004. 361–366. https:
//doi.org/10.1109/ISSNIP.2004.1417489

[11] I. T. Jolliffe. 1986. Principal Component Analysis. Springer New York, New York,
NY. 115–128 pages. https://doi.org/10.1007/978-1-4757-1904-8_7

[12] J. Li, S. Guo, Y. Yang, and J. He. 2016. Data Aggregation with Principal
Component Analysis in Big Data Wireless Sensor Networks. In 2016 12th
International Conference onMobile Ad-Hoc and Sensor Networks (MSN). 45–51.
https://doi.org/10.1109/MSN.2016.015

[13] M. Mangia, A. Marchioni, F. Pareschi, R. Rovatti, and G. Setti. 2018. Adminis-
tering quality-energy trade-off in IoT sensing applications by means of adapted
compressed sensing. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems 8, 4 (2018), 895–907. https://doi.org/10.1109/JETCAS.2018.2846884
cited By 1.

[14] M. Mangia, F. Pareschi, R. Rovatti, and G. Setti. 2018. Rakeness-based com-
pressed sensing and hub spreading to administer short/long-range communica-
tion tradeoff in IoT Settings. IEEE Internet of Things Journal 5, 3 (2018), 2220–
2233. https://doi.org/10.1109/JIOT.2018.2828647 cited By 2.

[15] M. Mangia, R. Rovatti, and G. Setti. 2012. Rakeness in the design of analog-to-
information conversion of sparse and localized signals. IEEE Transactions on
Circuits and Systems I: Regular Papers 59, 5 (2012), 1001–1014. https://doi.org/
10.1109/TCSI.2012.2191312 cited By 51.

[16] Ioannis Mitliagkas, Constantine Caramanis, and Prateek Jain. 2013. Memory
Limited, Streaming PCA. In Advances in Neural Information Processing Systems
26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 2886–2894. http://papers.nips.cc/paper/
5035-memory-limited-streaming-pca.pdf

[17] Erkki Oja. 1982. Simplified neuron model as a principal component analyzer.
Journal of Mathematical Biology 15, 3 (01 Nov 1982), 267–273. https://doi.org/
10.1007/BF00275687

[18] Erkki Oja. 1983. Subspace methods of pattern recognition. Letchworth, Hert-
fordshire, England : Research Studies Press ; New York : Wiley. Includes index.

[19] F. Pareschi, M. Mangia, D. Bortolotti, A. Bartolini, L. Benini, R. Rovatti, and
G. Setti. 2017. Energy Analysis of Decoders for Rakeness-Based Compressed
Sensing of ECG Signals. IEEE Transactions on Biomedical Circuits and Systems
11, 6 (2017), 1278–1289. https://doi.org/10.1109/TBCAS.2017.2740059 cited By 4.

[20] M. Reyer, S. Hurlebaus, J. Mander, and O. E. Ozbulut. 2011. Design of a wire-
less sensor network for Structural Health Monitoring of bridges. In 2011 Fifth
International Conference on Sensing Technology. 515–520. https://doi.org/10.
1109/ICSensT.2011.6137033

[21] A. Rooshenas, H. R. Rabiee, A. Movaghar, and M. Y. Naderi. 2010. Reducing the
data transmission in Wireless Sensor Networks using the Principal Component
Analysis. In 2010 Sixth International Conference on Intelligent Sensors, Sensor
Networks and Information Processing. 133–138. https://doi.org/10.1109/ISSNIP.
2010.5706781

[22] Elmustafa sayed ali ahmed and Zeinab Kamal Aldein Mohammed. 2017. Internet
of Things Applications, Challenges and Related Future Technologies. world
scientific news (01 2017).

[23] W. Shi and S. Dustdar. 2016. The Promise of Edge Computing. Computer 49, 5
(May 2016), 78–81. https://doi.org/10.1109/MC.2016.145

[24] C. Arcadius Tokognon, B. Gao, G. Y. Tian, and Y. Yan. 2017. Structural Health
Monitoring Framework Based on Internet of Things: A Survey. IEEE Internet
of Things Journal 4, 3 (June 2017), 619–635. https://doi.org/10.1109/JIOT.2017.
2664072

[25] N. Vaswani, Y. Chi, and T. Bouwmans. 2018. Special Issue on: Rethinking Principal
Component Analysis (PCA) for Modern Data Sets: Theory, Algorithms, and
Applications. Proc. IEEE 106, 8 (Aug 2018), 1269–1457.

[26] Puyudi Yang, Cho-Jui Hsieh, and Jane-Ling Wang. 2018. History PCA: A New
Algorithm for Streaming PCA. arXiv (2018). https://arxiv.org/abs/1802.05447

5

https://doi.org/10.1109/FiCloud.2014.83
https://doi.org/10.1109/MWSCAS.2016.7870118
https://doi.org/10.1109/MWSCAS.2016.7870118
https://doi.org/10.1109/FOCS.2017.51
https://doi.org/10.1109/FOCS.2017.51
https://doi.org/10.1016/j.adhoc.2018.06.011
https://doi.org/10.1109/TETC.2016.2564361
https://doi.org/10.1109/FiCloud.2014.14
https://doi.org/10.1109/FiCloud.2014.14
https://www.artik.io/modules/artik-710/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/
http://dl.acm.org/citation.cfm?id=2969033.2969146
https://doi.org/10.1109/ISSNIP.2004.1417489
https://doi.org/10.1109/ISSNIP.2004.1417489
https://doi.org/10.1007/978-1-4757-1904-8_7
https://doi.org/10.1109/MSN.2016.015
https://doi.org/10.1109/JETCAS.2018.2846884
https://doi.org/10.1109/JIOT.2018.2828647
https://doi.org/10.1109/TCSI.2012.2191312
https://doi.org/10.1109/TCSI.2012.2191312
http://papers.nips.cc/paper/5035-memory-limited-streaming-pca.pdf
http://papers.nips.cc/paper/5035-memory-limited-streaming-pca.pdf
https://doi.org/10.1007/BF00275687
https://doi.org/10.1007/BF00275687
https://doi.org/10.1109/TBCAS.2017.2740059
https://doi.org/10.1109/ICSensT.2011.6137033
https://doi.org/10.1109/ICSensT.2011.6137033
https://doi.org/10.1109/ISSNIP.2010.5706781
https://doi.org/10.1109/ISSNIP.2010.5706781
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1109/JIOT.2017.2664072
https://doi.org/10.1109/JIOT.2017.2664072
https://arxiv.org/abs/1802.05447

	Abstract
	1 Introduction
	2 History PCA
	3 Dataset & Platforms overview
	3.1 Dataset
	3.2 Platforms overview

	4 Results
	4.1 Use case: Vibration based SHM
	4.2 Rpi & Artik Measurements

	5 Conclusion
	6 Acknowledgments
	References

