We consider the Wulff problem arising from the study of the Heitmann-Radin energy of N atoms sitting on a periodic lattice. Combining the sharp quantitative Wulff inequality in the continuum setting with a notion of quantitative closeness between discrete and continuum energies, we provide very short proofs of fluctuation estimates of Voronoi-type sets associated with almost minimizers of the discrete problem about the continuum limit Wulff shape. In the particular case of exact energy minimizers, we recover the well-known, sharp N^3/4 scaling law for all considered planar lattices, as well as a sub-optimal scaling law for the cubic lattice in dimension d >= 3.

Maximal fluctuations on periodic lattices: an approach via quantitative Wulff inequalities / Leonardi, Gian Paolo; Cicalese, Marco. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 1432-0916. - ELETTRONICO. - 2020, 375:3(2020), pp. 1931-1944. [10.1007/s00220-019-03612-3]

Maximal fluctuations on periodic lattices: an approach via quantitative Wulff inequalities

Leonardi, Gian Paolo;
2020-01-01

Abstract

We consider the Wulff problem arising from the study of the Heitmann-Radin energy of N atoms sitting on a periodic lattice. Combining the sharp quantitative Wulff inequality in the continuum setting with a notion of quantitative closeness between discrete and continuum energies, we provide very short proofs of fluctuation estimates of Voronoi-type sets associated with almost minimizers of the discrete problem about the continuum limit Wulff shape. In the particular case of exact energy minimizers, we recover the well-known, sharp N^3/4 scaling law for all considered planar lattices, as well as a sub-optimal scaling law for the cubic lattice in dimension d >= 3.
2020
3
Leonardi, Gian Paolo; Cicalese, Marco
Maximal fluctuations on periodic lattices: an approach via quantitative Wulff inequalities / Leonardi, Gian Paolo; Cicalese, Marco. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 1432-0916. - ELETTRONICO. - 2020, 375:3(2020), pp. 1931-1944. [10.1007/s00220-019-03612-3]
File in questo prodotto:
File Dimensione Formato  
N34_2019.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 407.27 kB
Formato Adobe PDF
407.27 kB Adobe PDF Visualizza/Apri
s00220-019-03612-3.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 398.01 kB
Formato Adobe PDF
398.01 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/236296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact