We give a lower bound for the Castelnuovo-Mumford regularity of binomial edge ideals of block graphs by computing the two distinguished extremal Betti numbers of a new family of block graphs, called flower graphs. Moreover, we present linear time algorithms to compute the Castelnuovo–Mumford regularity and the Krull dimension of binomial edge ideals of block graphs.
Krull dimension and regularity of binomial edge ideals of block graphs / Mascia, Carla; Rinaldo, Giancarlo. - In: JOURNAL OF ALGEBRA AND ITS APPLICATIONS. - ISSN 0219-4988. - STAMPA. - 2020, 19:7(2020), pp. 2050133.1-2050133.17. [10.1142/S0219498820501339]
Krull dimension and regularity of binomial edge ideals of block graphs
Carla Mascia;Giancarlo Rinaldo
2020-01-01
Abstract
We give a lower bound for the Castelnuovo-Mumford regularity of binomial edge ideals of block graphs by computing the two distinguished extremal Betti numbers of a new family of block graphs, called flower graphs. Moreover, we present linear time algorithms to compute the Castelnuovo–Mumford regularity and the Krull dimension of binomial edge ideals of block graphs.File | Dimensione | Formato | |
---|---|---|---|
KrullDimRegBlockGraphs.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
279.57 kB
Formato
Adobe PDF
|
279.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione