High order Whitney finite element spaces generally lack natural choices of bases but they do have spanning families. In these pages, we recall such a family on simplicial meshes and we prove theoretically its effectiveness. We also comment on some aspects of a new set of degrees of freedom, the so-called weights on the small simplices, to represent discrete functions in these spaces.

Some remarks on spanning families and weights for high order Whitney spaces on simplices / Alonso Rodríguez, Ana; Rapetti, Francesca. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - STAMPA. - 2019:(2019), pp. 2961-2972. [10.1016/j.camwa.2019.03.006]

Some remarks on spanning families and weights for high order Whitney spaces on simplices

Alonso Rodríguez, Ana;
2019-01-01

Abstract

High order Whitney finite element spaces generally lack natural choices of bases but they do have spanning families. In these pages, we recall such a family on simplicial meshes and we prove theoretically its effectiveness. We also comment on some aspects of a new set of degrees of freedom, the so-called weights on the small simplices, to represent discrete functions in these spaces.
2019
Alonso Rodríguez, Ana; Rapetti, Francesca
Some remarks on spanning families and weights for high order Whitney spaces on simplices / Alonso Rodríguez, Ana; Rapetti, Francesca. - In: COMPUTERS & MATHEMATICS WITH APPLICATIONS. - ISSN 0898-1221. - STAMPA. - 2019:(2019), pp. 2961-2972. [10.1016/j.camwa.2019.03.006]
File in questo prodotto:
File Dimensione Formato  
CMWA19.pdf

Solo gestori archivio

Descrizione: Articolo
Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 489.14 kB
Formato Adobe PDF
489.14 kB Adobe PDF   Visualizza/Apri
1-s2.0-S0898122119301257-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 442.45 kB
Formato Adobe PDF
442.45 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/231678
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact