Microclimates at the land–air interface affect the physiological functioning of organisms which, in turn, influences the structure, composition, and functioning of ecosystems. We review how remote sensing technologies that deliver detailed data about the structure and thermal composition of environments are improving the assessment of microclimate over space and time. Mapping landscape-level heterogeneity of microclimate advances our ability to study how organisms respond to climate variation, which has important implications for understanding climate-change impacts on biodiversity and ecosystems. Interpolating in situ microclimate measurements and downscaling macroclimate provides an organism-centered perspective for studying climate–species interactions and species distribution dynamics. We envisage that mapping of microclimate will soon become commonplace, enabling more reliable predictions of species and ecosystem responses to global change.

Advances in Microclimate Ecology Arising from Remote Sensing / Zellweger, Florian; De Frenne, Pieter; Lenoir, Jonathan; Rocchini, Duccio; Coomes, David. - In: TRENDS IN ECOLOGY & EVOLUTION. - ISSN 0169-5347. - 34:4(2019), pp. 327-341. [10.1016/j.tree.2018.12.012]

Advances in Microclimate Ecology Arising from Remote Sensing

Rocchini, Duccio;
2019-01-01

Abstract

Microclimates at the land–air interface affect the physiological functioning of organisms which, in turn, influences the structure, composition, and functioning of ecosystems. We review how remote sensing technologies that deliver detailed data about the structure and thermal composition of environments are improving the assessment of microclimate over space and time. Mapping landscape-level heterogeneity of microclimate advances our ability to study how organisms respond to climate variation, which has important implications for understanding climate-change impacts on biodiversity and ecosystems. Interpolating in situ microclimate measurements and downscaling macroclimate provides an organism-centered perspective for studying climate–species interactions and species distribution dynamics. We envisage that mapping of microclimate will soon become commonplace, enabling more reliable predictions of species and ecosystem responses to global change.
2019
4
Zellweger, Florian; De Frenne, Pieter; Lenoir, Jonathan; Rocchini, Duccio; Coomes, David
Advances in Microclimate Ecology Arising from Remote Sensing / Zellweger, Florian; De Frenne, Pieter; Lenoir, Jonathan; Rocchini, Duccio; Coomes, David. - In: TRENDS IN ECOLOGY & EVOLUTION. - ISSN 0169-5347. - 34:4(2019), pp. 327-341. [10.1016/j.tree.2018.12.012]
File in questo prodotto:
File Dimensione Formato  
PIIS0169534718303045.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/231489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 245
  • ???jsp.display-item.citation.isi??? 227
  • OpenAlex ND
social impact