Given tensors $T$ and $T'$ of order $k$ and $k'$ respectively, the tensor product $T otimes T'$ is a tensor of order $k+k'$. It was recently shown that the tensor rank can be strictly submultiplicative under this operation ([Christandl-Jensen-Zuiddam]). We study this phenomenon for symmetric tensors where additional techniques from algebraic geometry are available. The tensor product of symmetric tensors results in a partially symmetric tensor and our results amount to bounds on the partially symmetric rank. Following motivations from algebraic complexity theory and quantum information theory, we focus on the so-called emph{$W$-states}, namely monomials of the form $x^{d-1}y$, and on products of such. In particular, we prove that the partially symmetric rank of $x^{d_1 -1}y ootimes x^{d_k-1} y$ is at most $2^{k-1}(d_1+ cdots +d_k)$.

On the partially symmetric rank of tensor products of W-states and other symmetric tensors / Ballico, Edoardo; Bernardi, Alessandra; Christandl, Matthias; Gesmundo, Fulvio. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 30:1(2019), pp. 93-124. [10.4171/RLM/837]

On the partially symmetric rank of tensor products of W-states and other symmetric tensors

EDOARDO BALLICO;ALESSANDRA BERNARDI;
2019-01-01

Abstract

Given tensors $T$ and $T'$ of order $k$ and $k'$ respectively, the tensor product $T otimes T'$ is a tensor of order $k+k'$. It was recently shown that the tensor rank can be strictly submultiplicative under this operation ([Christandl-Jensen-Zuiddam]). We study this phenomenon for symmetric tensors where additional techniques from algebraic geometry are available. The tensor product of symmetric tensors results in a partially symmetric tensor and our results amount to bounds on the partially symmetric rank. Following motivations from algebraic complexity theory and quantum information theory, we focus on the so-called emph{$W$-states}, namely monomials of the form $x^{d-1}y$, and on products of such. In particular, we prove that the partially symmetric rank of $x^{d_1 -1}y ootimes x^{d_k-1} y$ is at most $2^{k-1}(d_1+ cdots +d_k)$.
2019
1
Ballico, Edoardo; Bernardi, Alessandra; Christandl, Matthias; Gesmundo, Fulvio
On the partially symmetric rank of tensor products of W-states and other symmetric tensors / Ballico, Edoardo; Bernardi, Alessandra; Christandl, Matthias; Gesmundo, Fulvio. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 30:1(2019), pp. 93-124. [10.4171/RLM/837]
File in questo prodotto:
File Dimensione Formato  
finalW-Aug16.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 517.51 kB
Formato Adobe PDF
517.51 kB Adobe PDF Visualizza/Apri
RLM-2019-030-001-05.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 379.04 kB
Formato Adobe PDF
379.04 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/231286
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact