Let X be a Fano manifold of pseudoindex i_X whose Picard number is at least two and let R be an extremal ray of X with exceptional locus Exc(R). We prove an inequality which bounds the length of R in terms of i_X and of the dimension of Exc(R) and we investigate the border cases. In particular we classify Fano manifolds X of pseudoindex i_X obtained blowing up a smooth variety Y along a smooth subvariety T such that dim T < i_X.
Fano manifolds with long extremal rays / Andreatta, Marco; Occhetta, Gianluca. - In: THE ASIAN JOURNAL OF MATHEMATICS. - ISSN 1093-6106. - STAMPA. - 2005, 9:4(2005), pp. 523-543.
Fano manifolds with long extremal rays
Andreatta, Marco;Occhetta, Gianluca
2005-01-01
Abstract
Let X be a Fano manifold of pseudoindex i_X whose Picard number is at least two and let R be an extremal ray of X with exceptional locus Exc(R). We prove an inequality which bounds the length of R in terms of i_X and of the dimension of Exc(R) and we investigate the border cases. In particular we classify Fano manifolds X of pseudoindex i_X obtained blowing up a smooth variety Y along a smooth subvariety T such that dim T < i_X.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AsianJournal.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
790.07 kB
Formato
Adobe PDF
|
790.07 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione