We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results [4]. As an application of our main result we complete and simplify the analysis in [6], showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.

Corners in non-equiregular sub-Riemannian manifolds / LE DONNE, Enrico; Leonardi, Gian Paolo; Monti, Roberto; Vittone, Davide. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 21:3(2015), pp. 625-634. [10.1051/cocv/2014041]

Corners in non-equiregular sub-Riemannian manifolds

LEONARDI GIAN PAOLO;
2015-01-01

Abstract

We prove that in a class of non-equiregular sub-Riemannian manifolds corners are not length minimizing. This extends the results [4]. As an application of our main result we complete and simplify the analysis in [6], showing that in a 4-dimensional sub-Riemannian structure suggested by Agrachev and Gauthier all length-minimizing curves are smooth.
2015
3
LE DONNE, Enrico; Leonardi, Gian Paolo; Monti, Roberto; Vittone, Davide
Corners in non-equiregular sub-Riemannian manifolds / LE DONNE, Enrico; Leonardi, Gian Paolo; Monti, Roberto; Vittone, Davide. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 21:3(2015), pp. 625-634. [10.1051/cocv/2014041]
File in questo prodotto:
File Dimensione Formato  
LeDLeoMonVit_COCV2014.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 191.91 kB
Formato Adobe PDF
191.91 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/229158
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact