We develop an "improved convergence theorem" for a case study variational problem with singularities, namely, the isoperimetric problem on planar bubble clusters. We exploit this theorem in the description of isoperimetric clusters, possibly perturbed by a potential. Our methods are not specific to bubble clusters, and should provide a starting point to address similar issues in other variational problems where minimizers are known to possibly develop singularities. Further applications and extensions are discussed in companion papers.

Improved convergence theorems for bubble clusters: 1. The planar case / Marco, Cicalese; Leonardi, Gian Paolo; Francesco, Maggi. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - ELETTRONICO. - 2016, 65:6(2016), pp. 1979-2050. [10.1512/iumj.2016.65.5932]

Improved convergence theorems for bubble clusters: 1. The planar case

LEONARDI, Gian Paolo;
2016-01-01

Abstract

We develop an "improved convergence theorem" for a case study variational problem with singularities, namely, the isoperimetric problem on planar bubble clusters. We exploit this theorem in the description of isoperimetric clusters, possibly perturbed by a potential. Our methods are not specific to bubble clusters, and should provide a starting point to address similar issues in other variational problems where minimizers are known to possibly develop singularities. Further applications and extensions are discussed in companion papers.
2016
6
Marco, Cicalese; Leonardi, Gian Paolo; Francesco, Maggi
Improved convergence theorems for bubble clusters: 1. The planar case / Marco, Cicalese; Leonardi, Gian Paolo; Francesco, Maggi. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - ELETTRONICO. - 2016, 65:6(2016), pp. 1979-2050. [10.1512/iumj.2016.65.5932]
File in questo prodotto:
File Dimensione Formato  
CicaleseLeonardiMaggiIC1.pdf

Solo gestori archivio

Descrizione: Courtesy copy IUMI
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 760.46 kB
Formato Adobe PDF
760.46 kB Adobe PDF   Visualizza/Apri
5932.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 726.87 kB
Formato Adobe PDF
726.87 kB Adobe PDF   Visualizza/Apri
1409.6652.pdf

accesso aperto

Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 646.51 kB
Formato Adobe PDF
646.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/228714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
  • OpenAlex ND
social impact