We develop an "improved convergence theorem" for a case study variational problem with singularities, namely, the isoperimetric problem on planar bubble clusters. We exploit this theorem in the description of isoperimetric clusters, possibly perturbed by a potential. Our methods are not specific to bubble clusters, and should provide a starting point to address similar issues in other variational problems where minimizers are known to possibly develop singularities. Further applications and extensions are discussed in companion papers.
Improved convergence theorems for bubble clusters: 1. The planar case / Marco, Cicalese; Leonardi, Gian Paolo; Francesco, Maggi. - In: INDIANA UNIVERSITY MATHEMATICS JOURNAL. - ISSN 0022-2518. - ELETTRONICO. - 2016, 65:6(2016), pp. 1979-2050. [10.1512/iumj.2016.65.5932]
Improved convergence theorems for bubble clusters: 1. The planar case
LEONARDI, Gian Paolo;
2016-01-01
Abstract
We develop an "improved convergence theorem" for a case study variational problem with singularities, namely, the isoperimetric problem on planar bubble clusters. We exploit this theorem in the description of isoperimetric clusters, possibly perturbed by a potential. Our methods are not specific to bubble clusters, and should provide a starting point to address similar issues in other variational problems where minimizers are known to possibly develop singularities. Further applications and extensions are discussed in companion papers.File | Dimensione | Formato | |
---|---|---|---|
CicaleseLeonardiMaggiIC1.pdf
Solo gestori archivio
Descrizione: Courtesy copy IUMI
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
760.46 kB
Formato
Adobe PDF
|
760.46 kB | Adobe PDF | Visualizza/Apri |
5932.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
726.87 kB
Formato
Adobe PDF
|
726.87 kB | Adobe PDF | Visualizza/Apri |
1409.6652.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
646.51 kB
Formato
Adobe PDF
|
646.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione