The g-and-h distribution is able to handle well the complex behavior of loss data and applied to operational losses suggests that indirect inference estimators of VaR outperform quantile-based estimators.
Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach / Bee, Marco; Hambuckers, Julien; Trapin, Luca. - In: QUANTITATIVE FINANCE. - ISSN 1469-7688. - STAMPA. - 2019, 19:8(2019), pp. 1255-1266. [10.1080/14697688.2019.1580762]
Estimating Value-at-Risk for the g-and-h distribution: an indirect inference approach
Bee, Marco;
2019-01-01
Abstract
The g-and-h distribution is able to handle well the complex behavior of loss data and applied to operational losses suggests that indirect inference estimators of VaR outperform quantile-based estimators.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
BeeHambuckersTrapin2019a.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Creative commons
Dimensione
972.76 kB
Formato
Adobe PDF
|
972.76 kB | Adobe PDF | Visualizza/Apri |
|
BeeHambuckersTrapin2019.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



