Mitochondrial dysfunction is a central feature of a number of acute and chronic neurodegenerative conditions, but clinically approved therapeutic interventions are only just emerging. Here we demonstrate the potential clinical utility of low molecular weight inhibitors of the hypoxia inducible factor prolyl-4-hydroxylases (HIF PHDs) in preventing mitochondrial toxin-induced cell death in mouse striatal neurons that express a "knock-in" mutant Huntingtin allele. Protection from 3-nitropropionic acid (3-NP, a complex II inhibitor)-induced toxicity by HIF PHD inhibition occurs without rescue of succinate dehydrogenase activity. Although HIF-1alpha mRNA is dramatically induced by mutant huntingtin, HIF-1alpha depletion by short interfering RNAs (siRNA) does not affect steady-state viability or protection from 3-NP-induced death by HIF PHD inhibitors in these cells. Moreover, 3-NP-induced complex II inhibition in control or mutant striatal neurons does not lead to activation of HIF-dependent transcription. HIF PHD inhibition also protects cortical neurons from 3-NP-induced cytotoxicity. Protection of cortical neurons by HIF PHD inhibition correlates with enhanced VEGF but not PGC-1alpha gene expression. Together, these findings suggest that HIF PHD inhibitors are promising candidates for preventing cell death in conditions such as Huntington's disease and Alzheimer's disease that are associated with metabolic stress in the central nervous system.

HIF prolyl hydroxylase inhibitors prevent neuronal death induced by mitochondrial toxins: therapeutic implications for Huntington's disease and Alzheimer's disease / Niatsetskaya, Zoya; Basso, Manuela; Speer, Rachel E; Mcconoughey, Stephen J; Coppola, Giovanni; Ma, Thong C; Ratan, Rajiv R. - In: ANTIOXIDANTS & REDOX SIGNALING. - ISSN 1523-0864. - 12:4(2010), pp. 435-43-443. [10.1089/ars.2009.2800]

HIF prolyl hydroxylase inhibitors prevent neuronal death induced by mitochondrial toxins: therapeutic implications for Huntington's disease and Alzheimer's disease

Basso, Manuela;
2010-01-01

Abstract

Mitochondrial dysfunction is a central feature of a number of acute and chronic neurodegenerative conditions, but clinically approved therapeutic interventions are only just emerging. Here we demonstrate the potential clinical utility of low molecular weight inhibitors of the hypoxia inducible factor prolyl-4-hydroxylases (HIF PHDs) in preventing mitochondrial toxin-induced cell death in mouse striatal neurons that express a "knock-in" mutant Huntingtin allele. Protection from 3-nitropropionic acid (3-NP, a complex II inhibitor)-induced toxicity by HIF PHD inhibition occurs without rescue of succinate dehydrogenase activity. Although HIF-1alpha mRNA is dramatically induced by mutant huntingtin, HIF-1alpha depletion by short interfering RNAs (siRNA) does not affect steady-state viability or protection from 3-NP-induced death by HIF PHD inhibitors in these cells. Moreover, 3-NP-induced complex II inhibition in control or mutant striatal neurons does not lead to activation of HIF-dependent transcription. HIF PHD inhibition also protects cortical neurons from 3-NP-induced cytotoxicity. Protection of cortical neurons by HIF PHD inhibition correlates with enhanced VEGF but not PGC-1alpha gene expression. Together, these findings suggest that HIF PHD inhibitors are promising candidates for preventing cell death in conditions such as Huntington's disease and Alzheimer's disease that are associated with metabolic stress in the central nervous system.
2010
4
Niatsetskaya, Zoya; Basso, Manuela; Speer, Rachel E; Mcconoughey, Stephen J; Coppola, Giovanni; Ma, Thong C; Ratan, Rajiv R
HIF prolyl hydroxylase inhibitors prevent neuronal death induced by mitochondrial toxins: therapeutic implications for Huntington's disease and Alzheimer's disease / Niatsetskaya, Zoya; Basso, Manuela; Speer, Rachel E; Mcconoughey, Stephen J; Coppola, Giovanni; Ma, Thong C; Ratan, Rajiv R. - In: ANTIOXIDANTS & REDOX SIGNALING. - ISSN 1523-0864. - 12:4(2010), pp. 435-43-443. [10.1089/ars.2009.2800]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/222769
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 56
  • OpenAlex ND
social impact