Caused by a polyglutamine expansion in the huntingtin protein, Huntington's disease leads to striatal degeneration via the transcriptional dysregulation of a number of genes, including those involved in mitochondrial biogenesis. Here we show that transglutaminase 2, which is upregulated in HD, exacerbates transcriptional dysregulation by acting as a selective corepressor of nuclear genes; transglutaminase 2 interacts directly with histone H3 in the nucleus. In a cellular model of HD, transglutaminase inhibition de-repressed two established regulators of mitochondrial function, PGC-1alpha and cytochrome c and reversed susceptibility of human HD cells to the mitochondrial toxin, 3-nitroproprionic acid; however, protection mediated by transglutaminase inhibition was not associated with improved mitochondrial bioenergetics. A gene microarray analysis indicated that transglutaminase inhibition normalized expression of not only mitochondrial genes but also 40% of genes that are dysregulated in HD striatal neurons, including chaperone and histone genes. Moreover, transglutaminase inhibition attenuated degeneration in a Drosophila model of HD and protected mouse HD striatal neurons from excitotoxicity. Altogether these findings demonstrate that selective TG inhibition broadly corrects transcriptional dysregulation in HD and defines a novel HDAC-independent epigenetic strategy for treating neurodegeneration.
Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease / Mcconoughey, Stephen J; Basso, Manuela; Niatsetskaya, Zoya V; Sleiman, Sama F; Smirnova, Natalia A; Langley, Brett C; Mahishi, Lata; Cooper, Arthur J L; Antonyak, Marc A; Cerione, Rick A; Li, Bo; Starkov, Anatoly; Chaturvedi, Rajnish Kumar; Beal, M Flint; Coppola, Giovanni; Geschwind, Daniel H; Ryu, Hoon; Xia, Li; Iismaa, Siiri E; Pallos, Judit; Pasternack, Ralf; Hils, Martin; Fan, Jing; Raymond, Lynn A; Marsh, J Lawrence; Thompson, Leslie M; Ratan, Rajiv R. - In: EMBO MOLECULAR MEDICINE. - ISSN 1757-4676. - 2:9(2010), pp. 349-70-370. [10.1002/emmm.201000084]
Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease
Basso, Manuela;
2010-01-01
Abstract
Caused by a polyglutamine expansion in the huntingtin protein, Huntington's disease leads to striatal degeneration via the transcriptional dysregulation of a number of genes, including those involved in mitochondrial biogenesis. Here we show that transglutaminase 2, which is upregulated in HD, exacerbates transcriptional dysregulation by acting as a selective corepressor of nuclear genes; transglutaminase 2 interacts directly with histone H3 in the nucleus. In a cellular model of HD, transglutaminase inhibition de-repressed two established regulators of mitochondrial function, PGC-1alpha and cytochrome c and reversed susceptibility of human HD cells to the mitochondrial toxin, 3-nitroproprionic acid; however, protection mediated by transglutaminase inhibition was not associated with improved mitochondrial bioenergetics. A gene microarray analysis indicated that transglutaminase inhibition normalized expression of not only mitochondrial genes but also 40% of genes that are dysregulated in HD striatal neurons, including chaperone and histone genes. Moreover, transglutaminase inhibition attenuated degeneration in a Drosophila model of HD and protected mouse HD striatal neurons from excitotoxicity. Altogether these findings demonstrate that selective TG inhibition broadly corrects transcriptional dysregulation in HD and defines a novel HDAC-independent epigenetic strategy for treating neurodegeneration.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione