We present a version of the stochastic maximum principle (SMP) for ergodic control problems. In particular we give necessary (and sufficient) conditions for optimality for controlled dissipative systems in finite dimensions. The strategy we employ is mainly built on duality techniques. We are able to construct a dual process for all positive times via the analysis of a suitable class of perturbed linearized forward equations. We show that such a process is the unique bounded solution to a backward SDE on infinite horizon from which we can write a version of the SMP.

Ergodic Maximum Principle for Stochastic Systems / Orrieri, Carlo; Tessitore, Gianmario; Veverka, Petr. - In: APPLIED MATHEMATICS AND OPTIMIZATION. - ISSN 0095-4616. - 2019:(2019), pp. 567-591. [10.1007/s00245-017-9448-7]

Ergodic Maximum Principle for Stochastic Systems

Orrieri, Carlo;
2019-01-01

Abstract

We present a version of the stochastic maximum principle (SMP) for ergodic control problems. In particular we give necessary (and sufficient) conditions for optimality for controlled dissipative systems in finite dimensions. The strategy we employ is mainly built on duality techniques. We are able to construct a dual process for all positive times via the analysis of a suitable class of perturbed linearized forward equations. We show that such a process is the unique bounded solution to a backward SDE on infinite horizon from which we can write a version of the SMP.
2019
Orrieri, Carlo; Tessitore, Gianmario; Veverka, Petr
Ergodic Maximum Principle for Stochastic Systems / Orrieri, Carlo; Tessitore, Gianmario; Veverka, Petr. - In: APPLIED MATHEMATICS AND OPTIMIZATION. - ISSN 0095-4616. - 2019:(2019), pp. 567-591. [10.1007/s00245-017-9448-7]
File in questo prodotto:
File Dimensione Formato  
Orrieri2019_Article_ErgodicMaximumPrincipleForStoc.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 495.63 kB
Formato Adobe PDF
495.63 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/222278
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact