Let X⊂ℙr be an integral and non-degenerate variety. Set n:=dim(X). We prove that if the (k+n−1)-secant variety of X has (the expected) dimension (k+n−1)(n+1)−1
On the dimension of contact loci and the identifiability of tensors / Ballico, Edoardo; Bernardi, Alessandra; Chiantini, Luca. - In: ARKIV FÖR MATEMATIK. - ISSN 0004-2080. - 56:2(2018), pp. 265-283. [10.4310/ARKIV.2018.v56.n2.a4]
On the dimension of contact loci and the identifiability of tensors
Edoardo Ballico;Alessandra Bernardi;
2018-01-01
Abstract
Let X⊂ℙr be an integral and non-degenerate variety. Set n:=dim(X). We prove that if the (k+n−1)-secant variety of X has (the expected) dimension (k+n−1)(n+1)−1File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
unirankD.pdf
Solo gestori archivio
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
311.31 kB
Formato
Adobe PDF
|
311.31 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione