We provide monotonicity formulas for solutions to the p-Laplace equation defined in the exterior of a convex domain. A number of analytic and geometric consequences are derived, including the classical Minkowski inequality as well as new characterizations of rotationally symmetric solutions and domains. The proofs rely on the conformal splitting technique introduced by the second author in collaboration with V. Agostiniani.
Geometric aspects of p-capacitary potentials / Pinamonti, Andrea; Mazzieri, Lorenzo; Fogagnolo, Mattia. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - 36:4(2019), pp. 1151-1179. [10.1016/j.anihpc.2018.11.005]
Geometric aspects of p-capacitary potentials
Andrea Pinamonti;Lorenzo Mazzieri;Mattia Fogagnolo
2019-01-01
Abstract
We provide monotonicity formulas for solutions to the p-Laplace equation defined in the exterior of a convex domain. A number of analytic and geometric consequences are derived, including the classical Minkowski inequality as well as new characterizations of rotationally symmetric solutions and domains. The proofs rely on the conformal splitting technique introduced by the second author in collaboration with V. Agostiniani.File | Dimensione | Formato | |
---|---|---|---|
Mazz.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
577.43 kB
Formato
Adobe PDF
|
577.43 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S029414491830115X-main (1).pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
567.65 kB
Formato
Adobe PDF
|
567.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione