This paper presents an unsupervised approach to band selection in hyperspectral images that considers both spectral and spatial information in data dimensionality reduction. The approach exploits the concepts of superpixel and chunklets for identifying the spectral channels most suitable to be used in classification for discriminating land-cover classes. The segmented superpixels can be regarded as many small spectral homogeneous and spatial neighboring pixel chunklets. Based on the observation that the superpixel chunklets achieve high homogeneity and consistency within land-cover classes, a series of band criteria (BC) is identified by learning the optimal band transformation that results in low within-class variability and high total variability. Then, the learned BC, which are called band measures, are given in input to an efficient clustering algorithm, i.e., the affinity propagation, for selecting highly separable bands with low redundancy. The effectiveness of proposed approach ...

Superpixel-Based Unsupervised Band Selection for Classification of Hyperspectral Images / Yang, Chen; Bruzzone, Lorenzo; Zhao, Haishi; Tan, Yulei; Guan, Renchu. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 56:12(2018), pp. 7230-7245. [10.1109/TGRS.2018.2849443]

Superpixel-Based Unsupervised Band Selection for Classification of Hyperspectral Images

Bruzzone, Lorenzo;
2018-01-01

Abstract

This paper presents an unsupervised approach to band selection in hyperspectral images that considers both spectral and spatial information in data dimensionality reduction. The approach exploits the concepts of superpixel and chunklets for identifying the spectral channels most suitable to be used in classification for discriminating land-cover classes. The segmented superpixels can be regarded as many small spectral homogeneous and spatial neighboring pixel chunklets. Based on the observation that the superpixel chunklets achieve high homogeneity and consistency within land-cover classes, a series of band criteria (BC) is identified by learning the optimal band transformation that results in low within-class variability and high total variability. Then, the learned BC, which are called band measures, are given in input to an efficient clustering algorithm, i.e., the affinity propagation, for selecting highly separable bands with low redundancy. The effectiveness of proposed approach ...
2018
12
Yang, Chen; Bruzzone, Lorenzo; Zhao, Haishi; Tan, Yulei; Guan, Renchu
Superpixel-Based Unsupervised Band Selection for Classification of Hyperspectral Images / Yang, Chen; Bruzzone, Lorenzo; Zhao, Haishi; Tan, Yulei; Guan, Renchu. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 56:12(2018), pp. 7230-7245. [10.1109/TGRS.2018.2849443]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/218208
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
  • OpenAlex ND
social impact