Many novel medical echography modalities, like super harmonic imaging (SHI), employ imaging of higher harmonics arising from nonlinear propagation. Design optimization of dedicated imaging probes for these modalities requires accurate computation of the higher harmonic beam profiles. The existing iterative nonlinear contrast source method can perform such simulations. With this method, the nonlinear term of the Westervelt equation is considered to represent a distributed contrast source in a linear background medium. The full transient nonlinear acoustic wave field follows from the Neumann iterative solution of the corresponding integral equation. Each iteration involves the spatiotemporal convolution of the background Green's function with an estimate of the contrast source, and appropriate filtering enables a discretization approaching two points per smallest wavelength or period. To further reduce the computational load and to anticipate extension of the method, in this presentation, the effect of linearizing the nonlinear contrast source is investigated. This enables the replacement of the Neumann scheme by more efficient schemes. Numerical simulations show that for design purposes the effect of linearization on the harmonic components involved with SHI remains sufficiently small. Moreover, it is shown that a significant decrease in computational costs may be achieved by using a Bi-CGSTAB scheme.

A linearized contrast source method for full-wave modeling of nonlinear acoustic wave fields in homogeneous media / Verweij, Martin D.; Demi, Libertario; Van Dongen, Koen W. A.. - In: THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA. - ISSN 0001-4966. - 130:4(2011), pp. 2437-2437. ( Meeting of the Acoustical Society of America San Diego, California, USA 2011) [10.1121/1.3654776].

A linearized contrast source method for full-wave modeling of nonlinear acoustic wave fields in homogeneous media

Demi, Libertario;
2011-01-01

Abstract

Many novel medical echography modalities, like super harmonic imaging (SHI), employ imaging of higher harmonics arising from nonlinear propagation. Design optimization of dedicated imaging probes for these modalities requires accurate computation of the higher harmonic beam profiles. The existing iterative nonlinear contrast source method can perform such simulations. With this method, the nonlinear term of the Westervelt equation is considered to represent a distributed contrast source in a linear background medium. The full transient nonlinear acoustic wave field follows from the Neumann iterative solution of the corresponding integral equation. Each iteration involves the spatiotemporal convolution of the background Green's function with an estimate of the contrast source, and appropriate filtering enables a discretization approaching two points per smallest wavelength or period. To further reduce the computational load and to anticipate extension of the method, in this presentation, the effect of linearizing the nonlinear contrast source is investigated. This enables the replacement of the Neumann scheme by more efficient schemes. Numerical simulations show that for design purposes the effect of linearization on the harmonic components involved with SHI remains sufficiently small. Moreover, it is shown that a significant decrease in computational costs may be achieved by using a Bi-CGSTAB scheme.
2011
The Journal of the Acoustical Society of America
San Diego, CA, USA
Acoustical Society of America
A linearized contrast source method for full-wave modeling of nonlinear acoustic wave fields in homogeneous media / Verweij, Martin D.; Demi, Libertario; Van Dongen, Koen W. A.. - In: THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA. - ISSN 0001-4966. - 130:4(2011), pp. 2437-2437. ( Meeting of the Acoustical Society of America San Diego, California, USA 2011) [10.1121/1.3654776].
Verweij, Martin D.; Demi, Libertario; Van Dongen, Koen W. A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/211894
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact