Objectives: The aim of this study is to improve the accuracy of dynamic contrast-enhanced ultrasound (DCE-US) for prostate cancer (PCa) localization by means of a multiparametric approach. Materials and Methods: Thirteen different parameters related to either perfusion or dispersion were extracted pixel-by-pixel from 45 DCE-US recordings in 19 patients referred for radical prostatectomy. Multiparametric maps were retrospectively produced using a Gaussian mixture model algorithm. These were subsequently evaluated on their pixel-wise performance in classifying 43 benign and 42 malignant histopathologically confirmed regions of interest, using a prostate-based leave-one-out procedure. Results: The combination of the spatiotemporal correlation (r), mean transit time (μ), curve skewness (κ), and peak time (PT) yielded an accuracy of 81% ± 11%, which was higher than the best performing single parameters: r (73%), μ (72%), and wash-in time (72%). The negative predictive value increased to 83% ± 16% from 70%, 69% and 67%, respectively. Pixel inclusion based on the confidence level boosted these measures to 90% with half of the pixels excluded, but without disregarding any prostate or region. Conclusions: Our results suggest multiparametric DCE-US analysis might be a useful diagnostic tool for PCa, possibly supporting future targeting of biopsies or therapy. Application in other types of cancer can also be foreseen.
Multiparametric dynamic contrast-enhanced ultrasound imaging of prostate cancer / Wildeboer, Rogier R.; Postema, Arnoud W.; Demi, Libertario; Kuenen, Maarten P. J.; Wijkstra, Hessel; Mischi, Massimo. - In: EUROPEAN RADIOLOGY. - ISSN 0938-7994. - 27:8(2017), pp. 3226-3234. [10.1007/s00330-016-4693-8]
Multiparametric dynamic contrast-enhanced ultrasound imaging of prostate cancer
Demi, Libertario;
2017-01-01
Abstract
Objectives: The aim of this study is to improve the accuracy of dynamic contrast-enhanced ultrasound (DCE-US) for prostate cancer (PCa) localization by means of a multiparametric approach. Materials and Methods: Thirteen different parameters related to either perfusion or dispersion were extracted pixel-by-pixel from 45 DCE-US recordings in 19 patients referred for radical prostatectomy. Multiparametric maps were retrospectively produced using a Gaussian mixture model algorithm. These were subsequently evaluated on their pixel-wise performance in classifying 43 benign and 42 malignant histopathologically confirmed regions of interest, using a prostate-based leave-one-out procedure. Results: The combination of the spatiotemporal correlation (r), mean transit time (μ), curve skewness (κ), and peak time (PT) yielded an accuracy of 81% ± 11%, which was higher than the best performing single parameters: r (73%), μ (72%), and wash-in time (72%). The negative predictive value increased to 83% ± 16% from 70%, 69% and 67%, respectively. Pixel inclusion based on the confidence level boosted these measures to 90% with half of the pixels excluded, but without disregarding any prostate or region. Conclusions: Our results suggest multiparametric DCE-US analysis might be a useful diagnostic tool for PCa, possibly supporting future targeting of biopsies or therapy. Application in other types of cancer can also be foreseen.File | Dimensione | Formato | |
---|---|---|---|
European Radiology - OpenAcces.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
5.34 MB
Formato
Adobe PDF
|
5.34 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione