Let (S,L) be a polarized K3 surface with Pic(S)=Z[L] and L⋅L=2g−2, let C be a nonsingular curve of genus g−1 and let f:C→S be such that f(C)∈|L|. We prove that the Gaussian map ΦωC(−T) is non-surjective, where T is the degree two divisor over the singular point x of f(C). This generalizes a result of Kemeny with an entirely different proof. It uses the very ampleness of C on the blown-up surface S˜ of S at x and a theorem of L'vovski. The research that led to the present paper was partially supported by a grant of the group GNSAGA of INdAM.

Non-surjective Gaussian maps for singular curves on K3 surfaces / Fontanari, Claudio; Sernesi, Edoardo. - In: COLLECTANEA MATHEMATICA. - ISSN 0010-0757. - 70:1(2019), pp. 107-115. [10.1007/s13348-018-0223-0]

Non-surjective Gaussian maps for singular curves on K3 surfaces

Claudio Fontanari;Edoardo Sernesi
2019-01-01

Abstract

Let (S,L) be a polarized K3 surface with Pic(S)=Z[L] and L⋅L=2g−2, let C be a nonsingular curve of genus g−1 and let f:C→S be such that f(C)∈|L|. We prove that the Gaussian map ΦωC(−T) is non-surjective, where T is the degree two divisor over the singular point x of f(C). This generalizes a result of Kemeny with an entirely different proof. It uses the very ampleness of C on the blown-up surface S˜ of S at x and a theorem of L'vovski. The research that led to the present paper was partially supported by a grant of the group GNSAGA of INdAM.
2019
1
Fontanari, Claudio; Sernesi, Edoardo
Non-surjective Gaussian maps for singular curves on K3 surfaces / Fontanari, Claudio; Sernesi, Edoardo. - In: COLLECTANEA MATHEMATICA. - ISSN 0010-0757. - 70:1(2019), pp. 107-115. [10.1007/s13348-018-0223-0]
File in questo prodotto:
File Dimensione Formato  
author-copy.pdf

Solo gestori archivio

Descrizione: Author's personal copy
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 709.99 kB
Formato Adobe PDF
709.99 kB Adobe PDF   Visualizza/Apri
s13348-018-0223-0.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 389.45 kB
Formato Adobe PDF
389.45 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/207765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact