In this paper, we present the use of artificial neural networks to extract the doping profile from the one-dimensional carrier concentration distribution (and viceversa). The values of the weights and of the biases are computed for the optimum network configuration. The performances and the noise immunity characteristics of the proposed network are assessed and compared with those of the standard techniques. © 2004 Elsevier Ltd. All rights reserved.

On the use of neural networks to solve the reverse modelling problem for the quantification of dopant profiles extracted by scanning probe microscopy techniques / Ciappa, Mauro; Stangoni, Maria; Fichtner, Wolfgang; Ricci, Elisa; Scorzoni, Andrea. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. - 44:9-11 SPEC. ISS.(2004), pp. 1703-1708. [10.1016/j.microrel.2004.07.058]

On the use of neural networks to solve the reverse modelling problem for the quantification of dopant profiles extracted by scanning probe microscopy techniques

Ricci, Elisa;
2004-01-01

Abstract

In this paper, we present the use of artificial neural networks to extract the doping profile from the one-dimensional carrier concentration distribution (and viceversa). The values of the weights and of the biases are computed for the optimum network configuration. The performances and the noise immunity characteristics of the proposed network are assessed and compared with those of the standard techniques. © 2004 Elsevier Ltd. All rights reserved.
2004
9-11 SPEC. ISS.
Ciappa, Mauro; Stangoni, Maria; Fichtner, Wolfgang; Ricci, Elisa; Scorzoni, Andrea
On the use of neural networks to solve the reverse modelling problem for the quantification of dopant profiles extracted by scanning probe microscopy techniques / Ciappa, Mauro; Stangoni, Maria; Fichtner, Wolfgang; Ricci, Elisa; Scorzoni, Andrea. - In: MICROELECTRONICS RELIABILITY. - ISSN 0026-2714. - 44:9-11 SPEC. ISS.(2004), pp. 1703-1708. [10.1016/j.microrel.2004.07.058]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/205972
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact