Most approaches to structured output prediction rely on a hypothesis space of prediction functions that compute their output by maximizing a linear scoring function. In this paper we present two novel learning algorithms for this hypothesis class, and a statistical analysis of their performance. The methods rely on efficiently computing the first two moments of the scoring function over the output space, and using them to create convex objective functions for training. We report extensive experimental results for sequence alignment, named entity recognition, and RNA secondary structure prediction. © 2008 Elisa Ricci, Tijl De Bie and Nello Cristianini.

Magic moments for structured output prediction / Ricci, Elisa; De Bie, Tijl; Cristianini, Nello. - In: JOURNAL OF MACHINE LEARNING RESEARCH. - ISSN 1532-4435. - 9:(2008), pp. 2803-2846. [10.1162/15324430152748227]

Magic moments for structured output prediction

Ricci, Elisa;
2008-01-01

Abstract

Most approaches to structured output prediction rely on a hypothesis space of prediction functions that compute their output by maximizing a linear scoring function. In this paper we present two novel learning algorithms for this hypothesis class, and a statistical analysis of their performance. The methods rely on efficiently computing the first two moments of the scoring function over the output space, and using them to create convex objective functions for training. We report extensive experimental results for sequence alignment, named entity recognition, and RNA secondary structure prediction. © 2008 Elisa Ricci, Tijl De Bie and Nello Cristianini.
2008
Ricci, Elisa; De Bie, Tijl; Cristianini, Nello
Magic moments for structured output prediction / Ricci, Elisa; De Bie, Tijl; Cristianini, Nello. - In: JOURNAL OF MACHINE LEARNING RESEARCH. - ISSN 1532-4435. - 9:(2008), pp. 2803-2846. [10.1162/15324430152748227]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/205944
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact