A block cipher can be easily broken if its encryption functions can be seen as linear maps on a small vector space. Even more so, if its round functions can be seen as linear maps on a small vector space. We show that this cannot happen for the AES. More precisely, we prove that if the AES round transformations can be embedded into a linear cipher acting on a vector space, then this space is huge-dimensional and so this embedding is infeasible in practice. We present two elementary proofs.

A note on an infeasible linearization of some block ciphers / Aragona, Riccardo; Rimoldi, Anna; Sala, Massimiliano. - In: JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY. - ISSN 0972-0529. - 21:1(2018), pp. 209-218. [10.1080/09720529.2016.1197598]

A note on an infeasible linearization of some block ciphers

Aragona, Riccardo;Rimoldi, Anna;Sala, Massimiliano
2018-01-01

Abstract

A block cipher can be easily broken if its encryption functions can be seen as linear maps on a small vector space. Even more so, if its round functions can be seen as linear maps on a small vector space. We show that this cannot happen for the AES. More precisely, we prove that if the AES round transformations can be embedded into a linear cipher acting on a vector space, then this space is huge-dimensional and so this embedding is infeasible in practice. We present two elementary proofs.
2018
1
Aragona, Riccardo; Rimoldi, Anna; Sala, Massimiliano
A note on an infeasible linearization of some block ciphers / Aragona, Riccardo; Rimoldi, Anna; Sala, Massimiliano. - In: JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY. - ISSN 0972-0529. - 21:1(2018), pp. 209-218. [10.1080/09720529.2016.1197598]
File in questo prodotto:
File Dimensione Formato  
1511.02360.pdf

Open Access dal 02/02/2019

Descrizione: Articolo principale
Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 126.92 kB
Formato Adobe PDF
126.92 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/201610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact