APN permutations in even dimension are vectorial Boolean functions that play a special role in the design of block ciphers. We study their properties, providing some general results and some applications to the low-dimension cases. In particular, we prove that none of their components can be quadratic. For an APN vectorial Boolean function (in even dimension) with all cubic components we prove the existence of a component having a large number of balanced derivatives. Using these restrictions, we obtain the first theoretical proof of the non-existence of APN permutations in dimension 4. Moreover, we derive some constraints on APN permutations in dimension 6.

A note on APN permutations in even dimension / Calderini, M.; Sala, M.; Villa, I.. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - STAMPA. - 46:(2017), pp. 1-16. [10.1016/j.ffa.2017.02.001]

A note on APN permutations in even dimension

Calderini, M.;Sala, M.;Villa, I.
2017-01-01

Abstract

APN permutations in even dimension are vectorial Boolean functions that play a special role in the design of block ciphers. We study their properties, providing some general results and some applications to the low-dimension cases. In particular, we prove that none of their components can be quadratic. For an APN vectorial Boolean function (in even dimension) with all cubic components we prove the existence of a component having a large number of balanced derivatives. Using these restrictions, we obtain the first theoretical proof of the non-existence of APN permutations in dimension 4. Moreover, we derive some constraints on APN permutations in dimension 6.
2017
Calderini, M.; Sala, M.; Villa, I.
A note on APN permutations in even dimension / Calderini, M.; Sala, M.; Villa, I.. - In: FINITE FIELDS AND THEIR APPLICATIONS. - ISSN 1071-5797. - STAMPA. - 46:(2017), pp. 1-16. [10.1016/j.ffa.2017.02.001]
File in questo prodotto:
File Dimensione Formato  
1511.08101.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Pre-print non referato (Non-refereed preprint)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 112.47 kB
Formato Adobe PDF
112.47 kB Adobe PDF Visualizza/Apri
1-s2.0-S1071579717300126-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 361.87 kB
Formato Adobe PDF
361.87 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/201327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact