Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q,d,k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.
On Optimal Nonlinear Systematic Codes / Guerrini, Eleonora; Meneghetti, Alessio; Sala, Massimiliano. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - STAMPA. - 62:6(2016), pp. 3103-3112. [10.1109/TIT.2016.2553142]
On Optimal Nonlinear Systematic Codes
Meneghetti, Alessio;Sala, Massimiliano
2016-01-01
Abstract
Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q,d,k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.File | Dimensione | Formato | |
---|---|---|---|
07451245.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
283.58 kB
Formato
Adobe PDF
|
283.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione