Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q,d,k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.

On Optimal Nonlinear Systematic Codes / Guerrini, Eleonora; Meneghetti, Alessio; Sala, Massimiliano. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - STAMPA. - 62:6(2016), pp. 3103-3112. [10.1109/TIT.2016.2553142]

On Optimal Nonlinear Systematic Codes

Meneghetti, Alessio;Sala, Massimiliano
2016-01-01

Abstract

Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q,d,k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.
2016
6
Guerrini, Eleonora; Meneghetti, Alessio; Sala, Massimiliano
On Optimal Nonlinear Systematic Codes / Guerrini, Eleonora; Meneghetti, Alessio; Sala, Massimiliano. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - STAMPA. - 62:6(2016), pp. 3103-3112. [10.1109/TIT.2016.2553142]
File in questo prodotto:
File Dimensione Formato  
07451245.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 283.58 kB
Formato Adobe PDF
283.58 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/201039
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact