Here we investigate the property of effectivity for adjoint divisors. Among others, we prove the following results: A projective variety X with at most canonical singularities is uniruled if and only if for each very ample Cartier divisor H on X we have H0(X,m0KX+H)=0 for some m0=m0(H)>0. Let X be a projective 4-fold, L an ample divisor and t an integer with t≥3. If KX+tL is pseudo-effective, then H0(X,KX+tL)≠0.
Effective adjunction theory / Andreatta, Marco; Fontanari, Claudio. - In: ANNALI DELL'UNIVERSITÀ DI FERRARA. SCIENZE MATEMATICHE. - ISSN 1827-1510. - 64:2(2018), pp. 243-257. [10.1007/s11565-018-0300-z]
Effective adjunction theory
Marco Andreatta;Claudio Fontanari
2018-01-01
Abstract
Here we investigate the property of effectivity for adjoint divisors. Among others, we prove the following results: A projective variety X with at most canonical singularities is uniruled if and only if for each very ample Cartier divisor H on X we have H0(X,m0KX+H)=0 for some m0=m0(H)>0. Let X be a projective 4-fold, L an ample divisor and t an integer with t≥3. If KX+tL is pseudo-effective, then H0(X,KX+tL)≠0.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Adjunction-Ferrara_copy_final.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
704.88 kB
Formato
Adobe PDF
|
704.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione