Two prominent limitations of species distribution models (SDMs) are spatial biases in existing occurrence data and a lack of spatially explicit predictor variables to fully capture habitat characteristics of species. Can existing and emerging remote sensing technologies meet these challenges and improve future SDMs? We believe so. Novel products derived from multispectral and hyperspectral sensors, as well as future Light Detection and Ranging (LiDAR) and RADAR missions, may play a key role in improving model performance. In this perspective piece, we demonstrate how modern sensors onboard satellites, planes and unmanned aerial vehicles are revolutionizing the way we can detect and monitor both plant and animal species in terrestrial and aquatic ecosystems as well as allowing the emergence of novel predictor variables appropriate for species distribution modeling. We hope this interdisciplinary perspective will motivate ecologists, remote sensing experts and modelers to work together for developing a more refined SDM framework in the near future.

Will remote sensing shape the next generation of species distribution models? / He, K. S.; Bradley, B. A.; Cord, A. F.; Rocchini, D.; Tuanmu, M. -N.; Schmidtlein, S.; Turner, W.; Wegmann, M.; Pettorelli, N.. - In: REMOTE SENSING IN ECOLOGY AND CONSERVATION. - ISSN 2056-3485. - 1:1(2015), pp. 4-18. [10.1002/rse2.7]

Will remote sensing shape the next generation of species distribution models?

Rocchini, D.;
2015-01-01

Abstract

Two prominent limitations of species distribution models (SDMs) are spatial biases in existing occurrence data and a lack of spatially explicit predictor variables to fully capture habitat characteristics of species. Can existing and emerging remote sensing technologies meet these challenges and improve future SDMs? We believe so. Novel products derived from multispectral and hyperspectral sensors, as well as future Light Detection and Ranging (LiDAR) and RADAR missions, may play a key role in improving model performance. In this perspective piece, we demonstrate how modern sensors onboard satellites, planes and unmanned aerial vehicles are revolutionizing the way we can detect and monitor both plant and animal species in terrestrial and aquatic ecosystems as well as allowing the emergence of novel predictor variables appropriate for species distribution modeling. We hope this interdisciplinary perspective will motivate ecologists, remote sensing experts and modelers to work together for developing a more refined SDM framework in the near future.
2015
1
He, K. S.; Bradley, B. A.; Cord, A. F.; Rocchini, D.; Tuanmu, M. -N.; Schmidtlein, S.; Turner, W.; Wegmann, M.; Pettorelli, N.
Will remote sensing shape the next generation of species distribution models? / He, K. S.; Bradley, B. A.; Cord, A. F.; Rocchini, D.; Tuanmu, M. -N.; Schmidtlein, S.; Turner, W.; Wegmann, M.; Pettorelli, N.. - In: REMOTE SENSING IN ECOLOGY AND CONSERVATION. - ISSN 2056-3485. - 1:1(2015), pp. 4-18. [10.1002/rse2.7]
File in questo prodotto:
File Dimensione Formato  
rse2.7.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 371.17 kB
Formato Adobe PDF
371.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/198118
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 277
  • ???jsp.display-item.citation.isi??? 262
  • OpenAlex ND
social impact