Memetic Computing (MC) structures are algorithms composed of heterogeneous operators (memes) for solving optimization problems. In order to address these problems, this study investigates and proposes a simple yet extremely efficient structure, namely Parallel Memetic Structure (PMS). PMS is a single solution optimization algorithm composed of tree operators, the first one being a stochastic global search which explores the entire decision space searching for promising regions. In analogy with electrical networks, downstream of the global search component there is a parallel of two alternative elements, i.e. two local search algorithms with different features in terms of search logic, whose purpose is to refine the search in the regions detected by the upstream element. The first local search explores the space along the axes, while the second performs diagonal movements in the direction of the estimated gradient. The PMS algorithm, despite its simplicity, displays a respectable perfor...

Memetic Computing (MC) structures are algorithms composed of heterogeneous operators (memes) for solving optimization problems. In order to address these problems, this study investigates and proposes a simple yet extremely efficient structure, namely Parallel Memetic Structure (PMS). PMS is a single solution optimization algorithm composed of tree operators, the first one being a stochastic global search which explores the entire decision space searching for promising regions. In analogy with electrical networks, downstream of the global search component there is a parallel of two alternative elements, i.e. two local search algorithms with different features in terms of search logic, whose purpose is to refine the search in the regions detected by the upstream element. The first local search explores the space along the axes, while the second performs diagonal movements in the direction of the estimated gradient. The PMS algorithm, despite its simplicity, displays a respectable performance compared to that of popular meta-heuristics and modern optimization algorithms representing the state-of-the-art in the field. Thanks to its simple structure, PMS appears to be a very flexible algorithm for various problem features and dimensionality values. Unlike modern complex algorithm that are specialized for some benchmarks and some dimensionality values, PMS achieves solutions with a high quality in various and diverse contexts, for example both on low dimensional and large scale problems. An application example in the field of magnetic sensors further proves the potentials of the proposed approach. This study confirms the validity of the Ockham’s Razor in MC: efficiently designed simple structures can perform as well as (if not better than) complex algorithms composed of many parts.

Parallel memetic structures / Caraffini, Fabio; Neri, Ferrante; Iacca, Giovanni; Mol, Aran. - In: INFORMATION SCIENCES. - ISSN 0020-0255. - 227:(2013), pp. 60-82. [10.1016/j.ins.2012.11.017]

Parallel memetic structures

Iacca, Giovanni;
2013-01-01

Abstract

Memetic Computing (MC) structures are algorithms composed of heterogeneous operators (memes) for solving optimization problems. In order to address these problems, this study investigates and proposes a simple yet extremely efficient structure, namely Parallel Memetic Structure (PMS). PMS is a single solution optimization algorithm composed of tree operators, the first one being a stochastic global search which explores the entire decision space searching for promising regions. In analogy with electrical networks, downstream of the global search component there is a parallel of two alternative elements, i.e. two local search algorithms with different features in terms of search logic, whose purpose is to refine the search in the regions detected by the upstream element. The first local search explores the space along the axes, while the second performs diagonal movements in the direction of the estimated gradient. The PMS algorithm, despite its simplicity, displays a respectable perfor...
2013
Caraffini, Fabio; Neri, Ferrante; Iacca, Giovanni; Mol, Aran
Parallel memetic structures / Caraffini, Fabio; Neri, Ferrante; Iacca, Giovanni; Mol, Aran. - In: INFORMATION SCIENCES. - ISSN 0020-0255. - 227:(2013), pp. 60-82. [10.1016/j.ins.2012.11.017]
File in questo prodotto:
File Dimensione Formato  
Parallel Memetic Structures.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 964.56 kB
Formato Adobe PDF
964.56 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/196413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 104
  • ???jsp.display-item.citation.isi??? 84
  • OpenAlex 105
social impact