The analysis of worst-case behavior in wireless sensor networks is an extremely difficult task, due to the complex interactions that characterize the dynamics of these systems. In this paper, we present a new methodology for analyzing the performance of routing protocols used in such networks. The approach exploits a stochastic optimization technique, specifically an evolutionary algorithm, to generate a large, yet tractable, set of critical network topologies; such topologies are then used to infer general considerations on the behaviors under analysis. As a case study, we focused on the energy consumption of two well-known ad hoc routing protocols for sensor networks: the multi-hop link quality indicator and the collection tree protocol. The evolutionary algorithm started from a set of randomly generated topologies and iteratively enhanced them, maximizing a measure of "how interesting" such topologies are with respect to the analysis. In the second step, starting from the gathered e...

The analysis of worst-case behavior in wireless sensor networks is an extremely difficult task, due to the complex interactions that characterize the dynamics of these systems. In this paper, we present a new methodology for analyzing the performance of routing protocols used in such networks. The approach exploits a stochastic optimization technique, specifically an evolutionary algorithm, to generate a large, yet tractable, set of critical network topologies; such topologies are then used to infer general considerations on the behaviors under analysis. As a case study, we focused on the energy consumption of two well-known ad hoc routing protocols for sensor networks: the multi-hop link quality indicator and the collection tree protocol. The evolutionary algorithm started from a set of randomly generated topologies and iteratively enhanced them, maximizing a measure of “how interesting” such topologies are with respect to the analysis. In the second step, starting from the gathered evidence, we were able to define concrete, protocol-independent topological metrics which correlate well with protocols’ poor performances. Finally, we discovered a causal relation between the presence of cycles in a disconnected network, and abnormal network traffic. Such creative processes were made possible by the availability of a set of meaningful topology examples. Both the proposed methodology and the specific results presented here – that is, the new topological metrics and the causal explanation – can be fruitfully reused in different contexts, even beyond wireless sensor networks.

The impact of topology on energy consumption for collection tree protocols: An experimental assessment through evolutionary computation / Bucur, Doina; Iacca, Giovanni; Squillero, Giovanni; Tonda, Alberto. - In: APPLIED SOFT COMPUTING. - ISSN 1872-9681. - 16:(2014), pp. 210-222. [10.1016/j.asoc.2013.12.002]

The impact of topology on energy consumption for collection tree protocols: An experimental assessment through evolutionary computation

Iacca, Giovanni
;
2014-01-01

Abstract

The analysis of worst-case behavior in wireless sensor networks is an extremely difficult task, due to the complex interactions that characterize the dynamics of these systems. In this paper, we present a new methodology for analyzing the performance of routing protocols used in such networks. The approach exploits a stochastic optimization technique, specifically an evolutionary algorithm, to generate a large, yet tractable, set of critical network topologies; such topologies are then used to infer general considerations on the behaviors under analysis. As a case study, we focused on the energy consumption of two well-known ad hoc routing protocols for sensor networks: the multi-hop link quality indicator and the collection tree protocol. The evolutionary algorithm started from a set of randomly generated topologies and iteratively enhanced them, maximizing a measure of "how interesting" such topologies are with respect to the analysis. In the second step, starting from the gathered e...
2014
Bucur, Doina; Iacca, Giovanni; Squillero, Giovanni; Tonda, Alberto
The impact of topology on energy consumption for collection tree protocols: An experimental assessment through evolutionary computation / Bucur, Doina; Iacca, Giovanni; Squillero, Giovanni; Tonda, Alberto. - In: APPLIED SOFT COMPUTING. - ISSN 1872-9681. - 16:(2014), pp. 210-222. [10.1016/j.asoc.2013.12.002]
File in questo prodotto:
File Dimensione Formato  
The Impact of Topology on Energy Consumption for Collection Tree Protocols - an Experimental Assessment through Evolutionary Computation.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/196401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex 13
social impact