In recent years, the use of magnetic field measurements has become relevant in several applications ranging from non-invasive structural fault detection to tracking of micro-capsules within living organisms. Magnetic measurements are, however, affected by a high noise due to a number of causes, such as interference from external objects and the Earth magnetic field. Furthermore, in many situations the magnetic fields under analysis are time-variant, for example because generated by moving objects, power lines, antennas, etc. For these reasons, a general approach for accurate real-time magnetic dipole detection is unfeasible, but specific techniques should be devised. In this paper we explore the possibility of using multiple 3-axis magnetic field sensors to estimate the position and orientation of a magnetic dipole moving within the detection area of the sensors. We propose a real-time Computational Intelligence approach, based on an innovative single particle optimization algorithm, f...

In recent years, the use of magnetic field measurements has become relevant in several applications ranging from non-invasive structural fault detection to tracking of micro-capsules within living organisms. Magnetic measurements are, however, affected by a high noise due to a number of causes, such as interference from external objects and the Earth magnetic field. Furthermore, in many situations the magnetic fields under analysis are time-variant, for example because generated by moving objects, power lines, antennas, etc. For these reasons, a general approach for accurate real-time magnetic dipole detection is unfeasible, but specific techniques should be devised. In this paper we explore the possibility of using multiple 3-axis magnetic field sensors to estimate the position and orientation of a magnetic dipole moving within the detection area of the sensors. We propose a real-time Computational Intelligence approach, based on an innovative single particle optimization algorithm, for solving, with an average period of 2.5 ms, the inverse problem of magnetic dipole detection. Finally, we validate the proposed approach by means of an experimental setup consisting of 3 sensors and a custom graphical application showing in real-time the estimated position and orientation of the magnetic dipole. Experimental results show that the proposed approach is superior, in terms of detection error and computational time, to several state-of-the-art real-parameter optimization algorithms.

Real-time magnetic dipole detection with single particle optimization / Iacca, Giovanni; Bakker, Frank; Wörtche, Heinrich. - In: APPLIED SOFT COMPUTING. - ISSN 1568-4946. - 23:(2014), pp. 460-473. [10.1016/j.asoc.2014.06.026]

Real-time magnetic dipole detection with single particle optimization

Iacca, Giovanni;
2014-01-01

Abstract

In recent years, the use of magnetic field measurements has become relevant in several applications ranging from non-invasive structural fault detection to tracking of micro-capsules within living organisms. Magnetic measurements are, however, affected by a high noise due to a number of causes, such as interference from external objects and the Earth magnetic field. Furthermore, in many situations the magnetic fields under analysis are time-variant, for example because generated by moving objects, power lines, antennas, etc. For these reasons, a general approach for accurate real-time magnetic dipole detection is unfeasible, but specific techniques should be devised. In this paper we explore the possibility of using multiple 3-axis magnetic field sensors to estimate the position and orientation of a magnetic dipole moving within the detection area of the sensors. We propose a real-time Computational Intelligence approach, based on an innovative single particle optimization algorithm, f...
2014
Iacca, Giovanni; Bakker, Frank; Wörtche, Heinrich
Real-time magnetic dipole detection with single particle optimization / Iacca, Giovanni; Bakker, Frank; Wörtche, Heinrich. - In: APPLIED SOFT COMPUTING. - ISSN 1568-4946. - 23:(2014), pp. 460-473. [10.1016/j.asoc.2014.06.026]
File in questo prodotto:
File Dimensione Formato  
Real-time magnetic dipole detection with single particle optimization.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/196400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
  • OpenAlex 14
social impact