This study investigates the effects of the main welding parameters on mechanical strength and corrosion behavior of galvanized quenching and partitioning and transformation induced plasticity spot welds, which are proposed to assemble advanced structural car elements for the automotive industry. Steel sheets have been welded with different current, clamping force, and welding time settings. The quality of the spot welds has been assessed through lap-shear and salt spray corrosion tests, also evaluating the effects of metal expulsion on strength and corrosion resistance of the joints. An energy dispersive spectrometry elemental mapping has been used to assess the damage of the galvanized zinc coating and the nature of the corrosive products. Welding current and time have the strongest influence on the shear strength of the spot welds, whereas clamping force is of minor importance. However, clamping force has the primary effect on avoiding expulsion of molten metal from the nugget during the joining process. Furthermore, clamping force has a beneficial influence on the corrosion resistance because it mainly hinders the permeation of the corrosive environment towards the spot welds. Although the welded samples can exhibit high shear strength also when a metal expulsion occurs, this phenomenon should be avoided because it enhances the damage and vaporization of the protective zinc coating.
Effects of Welding Parameters on Strength and Corrosion Behavior of Dissimilar Galvanized Q&P and TRIP Spot Welds / Russo Spena, P.; Rossi, S.; Wurzer, R.. - In: METALS. - ISSN 2075-4701. - ELETTRONICO. - 7:12(2017), pp. 1-14. [10.3390/met7120534]
Effects of Welding Parameters on Strength and Corrosion Behavior of Dissimilar Galvanized Q&P and TRIP Spot Welds
S. Rossi;
2017-01-01
Abstract
This study investigates the effects of the main welding parameters on mechanical strength and corrosion behavior of galvanized quenching and partitioning and transformation induced plasticity spot welds, which are proposed to assemble advanced structural car elements for the automotive industry. Steel sheets have been welded with different current, clamping force, and welding time settings. The quality of the spot welds has been assessed through lap-shear and salt spray corrosion tests, also evaluating the effects of metal expulsion on strength and corrosion resistance of the joints. An energy dispersive spectrometry elemental mapping has been used to assess the damage of the galvanized zinc coating and the nature of the corrosive products. Welding current and time have the strongest influence on the shear strength of the spot welds, whereas clamping force is of minor importance. However, clamping force has the primary effect on avoiding expulsion of molten metal from the nugget during the joining process. Furthermore, clamping force has a beneficial influence on the corrosion resistance because it mainly hinders the permeation of the corrosive environment towards the spot welds. Although the welded samples can exhibit high shear strength also when a metal expulsion occurs, this phenomenon should be avoided because it enhances the damage and vaporization of the protective zinc coating.File | Dimensione | Formato | |
---|---|---|---|
metals-07-00534 2017.pdf
accesso aperto
Descrizione: articolo completo
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
7.44 MB
Formato
Adobe PDF
|
7.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione