Tree crown structural parameters are key inputs to studies spanning forest fire propagation, invasive species dynamics, avian habitat provision, and so on, but these parameters consistently are difficult to measure. While airborne laser scanning (ALS) provides uniform data and a consistent nadir perspective necessary for crown segmentation, the data characteristics of terrestrial laser scanning (TLS) make such crown segmentation efforts much more challenging. We present a data fusion approach to extract crown structure from TLS, by exploiting the complementary perspective of ALS. Multiple TLS point clouds are automatically registered to a single ALS point cloud by maximizing the normalized cross correlation between the global ALS canopy height model (CHM) and each of the local TLS CHMs through parameter optimization of a planar Euclidean transform. Per-tree canopy segmentation boundaries, which are reliably obtained from ALS, can then be adapted onto the more irregular TLS data. This is repeated for each TLS scan; the combined segmentation results from each registered TLS scan and the ALS data are fused into a single per-tree point cloud, from which canopy-level structural parameters readily can be extracted.
A Novel Automatic Method for the Fusion of ALS and TLS LiDAR Data for Robust Assessment of Tree Crown Structure / Paris, Claudia; Kelbe, David; Van Aardt, Jan; Bruzzone, Lorenzo. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 55:7(2017), pp. 3679-3693. [10.1109/TGRS.2017.2675963]
A Novel Automatic Method for the Fusion of ALS and TLS LiDAR Data for Robust Assessment of Tree Crown Structure
Paris, Claudia;Bruzzone, Lorenzo
2017-01-01
Abstract
Tree crown structural parameters are key inputs to studies spanning forest fire propagation, invasive species dynamics, avian habitat provision, and so on, but these parameters consistently are difficult to measure. While airborne laser scanning (ALS) provides uniform data and a consistent nadir perspective necessary for crown segmentation, the data characteristics of terrestrial laser scanning (TLS) make such crown segmentation efforts much more challenging. We present a data fusion approach to extract crown structure from TLS, by exploiting the complementary perspective of ALS. Multiple TLS point clouds are automatically registered to a single ALS point cloud by maximizing the normalized cross correlation between the global ALS canopy height model (CHM) and each of the local TLS CHMs through parameter optimization of a planar Euclidean transform. Per-tree canopy segmentation boundaries, which are reliably obtained from ALS, can then be adapted onto the more irregular TLS data. This is repeated for each TLS scan; the combined segmentation results from each registered TLS scan and the ALS data are fused into a single per-tree point cloud, from which canopy-level structural parameters readily can be extracted.File | Dimensione | Formato | |
---|---|---|---|
A Novel Automatic Method for the Fusion of ALS and TLS LiDAR Data for Robust.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.68 MB
Formato
Adobe PDF
|
3.68 MB | Adobe PDF | Visualizza/Apri |
Als_Tls_Fusion.pdf
accesso aperto
Tipologia:
Post-print referato (Refereed author’s manuscript)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.67 MB
Formato
Adobe PDF
|
2.67 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione