Automatic registration of multimodal remote sensing data [e.g., optical, light detection and ranging (LiDAR), and synthetic aperture radar (SAR)] is a challenging task due to the significant nonlinear radiometric differences between these data. To address this problem, this paper proposes a novel feature descriptor named the histogram of orientated phase congruency (HOPC), which is based on the structural properties of images. Furthermore, a similarity metric named HOPCncc is defined, which uses the normalized correlation coefficient (NCC) of the HOPC descriptors for multimodal registration. In the definition of the proposed similarity metric, we first extend the phase congruency model to generate its orientation representation and use the extended model to build HOPCncc. Then, a fast template matching scheme for this metric is designed to detect the control points between images. The proposed HOPCncc aims to capture the structural similarity between images and has been tested with a variety of optical, LiDAR, SAR, and map data. The results show that HOPCncc is robust against complex nonlinear radiometric differences and outperforms the state-of-the-art similarities metrics (i.e., NCC and mutual information) in matching performance. Moreover, a robust registration method is also proposed in this paper based on HOPCncc, which is evaluated using six pairs of multimodal remote sensing images. The experimental results demonstrate the effectiveness of the proposed method for multimodal image registration.

Robust registration of multimodal remote sensing images based on structural similarity / Ye, Yuanxin; Shan, Jie; Bruzzone, Lorenzo; Shen, Li. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 55:5(2017), pp. 2941-2958. [10.1109/TGRS.2017.2656380]

Robust registration of multimodal remote sensing images based on structural similarity

Ye, Yuanxin;Bruzzone, Lorenzo;
2017-01-01

Abstract

Automatic registration of multimodal remote sensing data [e.g., optical, light detection and ranging (LiDAR), and synthetic aperture radar (SAR)] is a challenging task due to the significant nonlinear radiometric differences between these data. To address this problem, this paper proposes a novel feature descriptor named the histogram of orientated phase congruency (HOPC), which is based on the structural properties of images. Furthermore, a similarity metric named HOPCncc is defined, which uses the normalized correlation coefficient (NCC) of the HOPC descriptors for multimodal registration. In the definition of the proposed similarity metric, we first extend the phase congruency model to generate its orientation representation and use the extended model to build HOPCncc. Then, a fast template matching scheme for this metric is designed to detect the control points between images. The proposed HOPCncc aims to capture the structural similarity between images and has been tested with a variety of optical, LiDAR, SAR, and map data. The results show that HOPCncc is robust against complex nonlinear radiometric differences and outperforms the state-of-the-art similarities metrics (i.e., NCC and mutual information) in matching performance. Moreover, a robust registration method is also proposed in this paper based on HOPCncc, which is evaluated using six pairs of multimodal remote sensing images. The experimental results demonstrate the effectiveness of the proposed method for multimodal image registration.
2017
5
Ye, Yuanxin; Shan, Jie; Bruzzone, Lorenzo; Shen, Li
Robust registration of multimodal remote sensing images based on structural similarity / Ye, Yuanxin; Shan, Jie; Bruzzone, Lorenzo; Shen, Li. - In: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. - ISSN 0196-2892. - STAMPA. - 55:5(2017), pp. 2941-2958. [10.1109/TGRS.2017.2656380]
File in questo prodotto:
File Dimensione Formato  
07862734.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 7.69 MB
Formato Adobe PDF
7.69 MB Adobe PDF   Visualizza/Apri
2103.16871.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/193662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 409
  • ???jsp.display-item.citation.isi??? 340
  • OpenAlex ND
social impact