We present a complete simulation and experimentation framework for IEEE 802.11p. The core of the framework is an SDR-based OFDM transceiver that we validated extensively by means of simulations, interoperability tests, and, ultimately, by conducting a field test. Being SDR-based, the transceiver offers important benefits: It provides access to all data down to and including the physical layer, allowing for a better understanding of the system. Based on open and programmable hardware and software, the transceiver is completely transparent and all implementation details can be studied and, if needed, modified. Finally, it enables a seamless switch between simulations and experiments and, thus, helps to bridge the gap between theory and practice. Comparing the transceiver's performance with independent results from simulations and experiments, we underline its potential to be used as a tool for further studies of IEEE 802.11p networks both in field operational tests as well as simulation based development of novel physical layer solutions. To make the framework accessible to fellow researchers and to allow reproduction of the results, we released it under an Open Source license.
Performance Assessment of IEEE 802.11p with an Open Source SDR-based Prototype / Bloessl, Bastian; Segata, Michele; Sommer, Christoph; Dressler, Falko. - In: IEEE TRANSACTIONS ON MOBILE COMPUTING. - ISSN 1536-1233. - 17:5(2018), pp. 1162-1175. [10.1109/TMC.2017.2751474]
Performance Assessment of IEEE 802.11p with an Open Source SDR-based Prototype
Michele Segata;
2018-01-01
Abstract
We present a complete simulation and experimentation framework for IEEE 802.11p. The core of the framework is an SDR-based OFDM transceiver that we validated extensively by means of simulations, interoperability tests, and, ultimately, by conducting a field test. Being SDR-based, the transceiver offers important benefits: It provides access to all data down to and including the physical layer, allowing for a better understanding of the system. Based on open and programmable hardware and software, the transceiver is completely transparent and all implementation details can be studied and, if needed, modified. Finally, it enables a seamless switch between simulations and experiments and, thus, helps to bridge the gap between theory and practice. Comparing the transceiver's performance with independent results from simulations and experiments, we underline its potential to be used as a tool for further studies of IEEE 802.11p networks both in field operational tests as well as simulation based development of novel physical layer solutions. To make the framework accessible to fellow researchers and to allow reproduction of the results, we released it under an Open Source license.File | Dimensione | Formato | |
---|---|---|---|
bloessl2017performance.pdf
accesso aperto
Tipologia:
Pre-print non referato (Non-refereed preprint)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
4.29 MB
Formato
Adobe PDF
|
4.29 MB | Adobe PDF | Visualizza/Apri |
Performance_Assessment_of_IEEEnbsp802.11p_with_an_Open_Source_SDR-Based_Prototype.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione