Dissolution and gelation procedures have a great influence on gelation time, microstructure and mechanical prop- erties of reconstituted collagen products. We have investigated the dissolution of atelocollagen in CO2/water solutions at low temperature (4 °C) at different CO2 pressures (0.3–0.9 MPa), as well as gelation kinetics and physico-chemical properties of the hydrogel obtained after CO2 removal. Compared to conventional methods, the CO2-assisted technique resulted in faster soluble collagen dissolution and faster gelation into transparent gels characterized by thin 10 nm fibrils. Electrophoresis and CD spectroscopy demonstrated that the process did not denature the soluble collagen. The possibility to obtain collagen dis- solution and gelation without the use of chemical agent other than water and CO2 makes this process particularly appealing for biomedical applications.
Soluble collagen dissolution and assembling in pressurized carbon dioxide water solutions / Zubal, L.; Bonani, W.; Maniglio, D.; Ceccato, R.; Renciuk, D.; Hampl, A.; Migliaresi, C.; Jancar, J.; Vojtova, L.. - In: EXPRESS POLYMER LETTERS. - ISSN 1788-618X. - 12:2(2018), pp. 159-170. [10.3144/expresspolymlett.2018.14]
Soluble collagen dissolution and assembling in pressurized carbon dioxide water solutions
Bonani, W.;Maniglio, D.;Ceccato, R.;Migliaresi, C.;
2018-01-01
Abstract
Dissolution and gelation procedures have a great influence on gelation time, microstructure and mechanical prop- erties of reconstituted collagen products. We have investigated the dissolution of atelocollagen in CO2/water solutions at low temperature (4 °C) at different CO2 pressures (0.3–0.9 MPa), as well as gelation kinetics and physico-chemical properties of the hydrogel obtained after CO2 removal. Compared to conventional methods, the CO2-assisted technique resulted in faster soluble collagen dissolution and faster gelation into transparent gels characterized by thin 10 nm fibrils. Electrophoresis and CD spectroscopy demonstrated that the process did not denature the soluble collagen. The possibility to obtain collagen dis- solution and gelation without the use of chemical agent other than water and CO2 makes this process particularly appealing for biomedical applications.File | Dimensione | Formato | |
---|---|---|---|
EPL-0008576_article.pdf
Solo gestori archivio
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Altra licenza (Other type of license)
Dimensione
611.04 kB
Formato
Adobe PDF
|
611.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione