We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also study the convergence almost everywhere and the convergence in L 1 appearing naturally in these contexts.

New characterizations of magnetic Sobolev spaces / Pinamonti, Andrea; Vecchi, Eugenio; Squassina, Marco; Nguyen, Hoai-mihn. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - 7:2(2018), pp. 227-245. [10.1515/anona-2017-0239]

New characterizations of magnetic Sobolev spaces

Andrea Pinamonti;
2018-01-01

Abstract

We establish two new characterizations of magnetic Sobolev spaces for Lipschitz magnetic fields in terms of nonlocal functionals. The first one is related to the BBM formula, due to Bourgain, Brezis and Mironescu. The second one is related to the work of the first author on the classical Sobolev spaces. We also study the convergence almost everywhere and the convergence in L 1 appearing naturally in these contexts.
2018
2
Pinamonti, Andrea; Vecchi, Eugenio; Squassina, Marco; Nguyen, Hoai-mihn
New characterizations of magnetic Sobolev spaces / Pinamonti, Andrea; Vecchi, Eugenio; Squassina, Marco; Nguyen, Hoai-mihn. - In: ADVANCES IN NONLINEAR ANALYSIS. - ISSN 2191-9496. - 7:2(2018), pp. 227-245. [10.1515/anona-2017-0239]
File in questo prodotto:
File Dimensione Formato  
Anona.pdf

accesso aperto

Descrizione: first online
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 872.82 kB
Formato Adobe PDF
872.82 kB Adobe PDF Visualizza/Apri
10.1515_anona-2017-0239.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 838.18 kB
Formato Adobe PDF
838.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/188394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 32
  • OpenAlex ND
social impact