Rubber hand illusion (RHI) is an important phenomenon for the investigation of body ownership and self/other distinction. The illusion is promoted by the spatial and temporal contingencies of visual inputs near a fake hand and physical touches to the real hand. The neural basis of this phenomenon is not fully understood. We hypothesized that the RHI is associated with a fronto-parietal circuit, and the goal of this study was to determine the dynamics of neural oscillation associated with this phenomenon. We measured electroencephalography while delivering spatially congruent/incongruent visuo-tactile stimulations to fake and real hands. We applied time-frequency analyses and calculated renormalized partial directed coherence (rPDC) to examine cortical dynamics during the bodily illusion. When visuo-tactile stimulation was spatially congruent, and the fake and real hands were aligned, we observed a reduced causal relationship from the medial frontal to the parietal regions with respect to baseline, around 200 ms post-stimulus. This change in rPDC was negatively correlated with a subjective report of the RHI intensity. Moreover, we observed a link between the proprioceptive drift and an increased causal relationship from the parietal cortex to the right somatosensory cortex during a relatively late period (550-750 ms post-stimulus). These findings suggest a two-stage process in which (1) reduced influence from the medial frontal regions over the parietal areas unlocks the mechanisms that preserve body integrity, allowing RHI to emerge; and (2) information processed at the parietal cortex is back-projected to the somatosensory cortex contralateral to the real hand, inducing proprioceptive drift.
Causal Dynamics of Scalp Electroencephalography Oscillation During the Rubber Hand Illusion / Kanayama, Noriaki; Morandi, Alberto; Hiraki, Kazuo; Pavani, Francesco. - In: BRAIN TOPOGRAPHY. - ISSN 0896-0267. - 30:1(2017), pp. 122-135. [10.1007/s10548-016-0519-x]
Causal Dynamics of Scalp Electroencephalography Oscillation During the Rubber Hand Illusion
Pavani, Francesco
2017-01-01
Abstract
Rubber hand illusion (RHI) is an important phenomenon for the investigation of body ownership and self/other distinction. The illusion is promoted by the spatial and temporal contingencies of visual inputs near a fake hand and physical touches to the real hand. The neural basis of this phenomenon is not fully understood. We hypothesized that the RHI is associated with a fronto-parietal circuit, and the goal of this study was to determine the dynamics of neural oscillation associated with this phenomenon. We measured electroencephalography while delivering spatially congruent/incongruent visuo-tactile stimulations to fake and real hands. We applied time-frequency analyses and calculated renormalized partial directed coherence (rPDC) to examine cortical dynamics during the bodily illusion. When visuo-tactile stimulation was spatially congruent, and the fake and real hands were aligned, we observed a reduced causal relationship from the medial frontal to the parietal regions with respect to baseline, around 200 ms post-stimulus. This change in rPDC was negatively correlated with a subjective report of the RHI intensity. Moreover, we observed a link between the proprioceptive drift and an increased causal relationship from the parietal cortex to the right somatosensory cortex during a relatively late period (550-750 ms post-stimulus). These findings suggest a two-stage process in which (1) reduced influence from the medial frontal regions over the parietal areas unlocks the mechanisms that preserve body integrity, allowing RHI to emerge; and (2) information processed at the parietal cortex is back-projected to the somatosensory cortex contralateral to the real hand, inducing proprioceptive drift.File | Dimensione | Formato | |
---|---|---|---|
Kanayama et al., 2017.pdf
Solo gestori archivio
Descrizione: Articolo principale
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione