Elementary perceptron is an artificial neural network with a single layer of adaptive links and one output neuron that can solve simple linearly separable tasks such as invariant pattern recognition, linear approximation, prediction and others. We report on the hardware realization of the elementary perceptron with the use of polyaniline-based memristive devices as the analog link weights. An error correction algorithm was used to get the perceptron to learn the implementation of the NAND and NOR logic functions as examples of linearly separable tasks. The physical realization of an elementary perceptron demonstrates the ability to form the hardware-based neuromorphic networks with the use of organic memristive devices. The results provide a great promise toward new approaches for very compact, low-volatile and high-performance neurochips that could be made for a huge number of intellectual products and applications.

Elementary perceptron is an artificial neural network with a single layer of adaptive links and one output neuron that can solve simple linearly separable tasks such as invariant pattern recognition, linear approximation, prediction and others. We report on the hardware realization of the elementary perceptron with the use of polyaniline-based memristive devices as the analog link weights. An error correction algorithm was used to get the perceptron to learn the implementation of the NAND and NOR logic functions as examples of linearly separable tasks. The physical realization of an elementary perceptron demonstrates the ability to form the hardware-based neuromorphic networks with the use of organic memristive devices. The results provide a great promise toward new approaches for very compact, low-volatile and high-performance neurochips that could be made for a huge number of intellectual products and applications. (C) 2015 Elsevier B.V. All rights reserved.

Hardware elementary perceptron based on polyaniline memristive devices

Baldi, Giacomo;
2015-01-01

Abstract

Elementary perceptron is an artificial neural network with a single layer of adaptive links and one output neuron that can solve simple linearly separable tasks such as invariant pattern recognition, linear approximation, prediction and others. We report on the hardware realization of the elementary perceptron with the use of polyaniline-based memristive devices as the analog link weights. An error correction algorithm was used to get the perceptron to learn the implementation of the NAND and NOR logic functions as examples of linearly separable tasks. The physical realization of an elementary perceptron demonstrates the ability to form the hardware-based neuromorphic networks with the use of organic memristive devices. The results provide a great promise toward new approaches for very compact, low-volatile and high-performance neurochips that could be made for a huge number of intellectual products and applications. (C) 2015 Elsevier B.V. All rights reserved.
2015
Demin, V. A.; Erokhin, V. V.; Emelyanov, A. V.; Battistoni, S.; Baldi, Giacomo; Iannotta, S.; Kashkarov, P. K.; Kovalchuk, M. V.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1566119915002633-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 748.45 kB
Formato Adobe PDF
748.45 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/173667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 77
  • OpenAlex ND
social impact