Recent theoretical models for the vibrations in glasses assume that the complex elastic modulus depends on frequency but not on the wave vector, q. This assumption translates in a simple q dependence of the dynamic structure factor, which can be experimentally tested. Following the suggestion of a recent paper [U. Buchenau, Phys. Rev. E 90, 062319 (2014)], we present here a new analysis, performed in q space, of inelastic x-ray scattering data of supercooled silica. The outcome of the analysis is compared to the more common approach in the frequency domain and indicates that the mentioned theoretical assumption is consistent with the data only below the boson peak frequency. At higher frequencies it gives rise to a breakdown of the classical second moment sum rule. This violation arises from the underlying assumption of the presence of a single excitation in the spectra. A comparison with the vibrational dynamics of α-cristobalite suggests, on the contrary, that in the terahertz frequency domain the inelastic spectrum of the glass gains contributions from both acousticlike and opticlike modes. A microscopic theory of the vibrations in glasses cannot neglect the medium range order in their structure, which gives rise to dispersion curves within a pseudo-Brillouin zone.
Recent theoretical models for the vibrations in glasses assume that the complex elastic modulus depends on frequency but not on the wave vector, q. This assumption translates in a simple q dependence of the dynamic structure factor, which can be experimentally tested. Following the suggestion of a recent paper [U. Buchenau, Phys. Rev. E 90, 062319 (2014)], we present here a new analysis, performed in q space, of inelastic x-ray scattering data of supercooled silica. The outcome of the analysis is compared to the more common approach in the frequency domain and indicates that the mentioned theoretical assumption is consistent with the data only below the boson peak frequency. At higher frequencies it gives rise to a breakdown of the classical second moment sum rule. This violation arises from the underlying assumption of the presence of a single excitation in the spectra. A comparison with the vibrational dynamics of alpha-cristobalite suggests, on the contrary, that in the terahertz frequency domain the inelastic spectrum of the glass gains contributions from both acousticlike and opticlike modes. A microscopic theory of the vibrations in glasses cannot neglect the medium range order in their structure, which gives rise to dispersion curves within a pseudo-Brillouin zone.
On the nontrivial wave-vector dependence of the elastic modulus of glasses
Baldi, Giacomo;Monaco, Giulio
2016-01-01
Abstract
Recent theoretical models for the vibrations in glasses assume that the complex elastic modulus depends on frequency but not on the wave vector, q. This assumption translates in a simple q dependence of the dynamic structure factor, which can be experimentally tested. Following the suggestion of a recent paper [U. Buchenau, Phys. Rev. E 90, 062319 (2014)], we present here a new analysis, performed in q space, of inelastic x-ray scattering data of supercooled silica. The outcome of the analysis is compared to the more common approach in the frequency domain and indicates that the mentioned theoretical assumption is consistent with the data only below the boson peak frequency. At higher frequencies it gives rise to a breakdown of the classical second moment sum rule. This violation arises from the underlying assumption of the presence of a single excitation in the spectra. A comparison with the vibrational dynamics of alpha-cristobalite suggests, on the contrary, that in the terahertz frequency domain the inelastic spectrum of the glass gains contributions from both acousticlike and opticlike modes. A microscopic theory of the vibrations in glasses cannot neglect the medium range order in their structure, which gives rise to dispersion curves within a pseudo-Brillouin zone.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.93.144204.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
464.98 kB
Formato
Adobe PDF
|
464.98 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione