Anticipating species distributions in space and time is necessary for effective biodiversity conservation and for prioritising management interventions. This is especially true when considering invasive species. In such a case, anticipating their spread is important to effectively plan management actions. However, considering uncertainty in the output of species distribution models is critical for correctly interpreting results and avoiding inappropriate decision-making. In particular, when dealing with species inventories, the bias resulting from sampling effort may lead to an over- or under-estimation of the local density of occurrences of a species. In this paper we propose an innovative method to i) map sampling effort bias using cartogram models and ii) explicitly consider such uncertainty in the modeling procedure under a Bayesian framework, which allows the integration of multilevel input data with prior information to improve the anticipation species distributions.

Anticipating species distributions: Handling sampling effort bias under a Bayesian framework / Rocchini, Duccio; Garzon Lopez, C. X.; Marcantonio, M.; Amici, V.; Bacaro, G.; Bastin, L.; Brummitt, N.; Chiarucci, A.; Foody, G. M.; Hauffe, H. C.; He, K. S.; Ricotta, C.; Rizzoli, A.; Rosà, R.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - STAMPA. - 2017:584-585(2017), pp. 282-290.

Anticipating species distributions: Handling sampling effort bias under a Bayesian framework

Rocchini, Duccio;Rosà, R.
2017-01-01

Abstract

Anticipating species distributions in space and time is necessary for effective biodiversity conservation and for prioritising management interventions. This is especially true when considering invasive species. In such a case, anticipating their spread is important to effectively plan management actions. However, considering uncertainty in the output of species distribution models is critical for correctly interpreting results and avoiding inappropriate decision-making. In particular, when dealing with species inventories, the bias resulting from sampling effort may lead to an over- or under-estimation of the local density of occurrences of a species. In this paper we propose an innovative method to i) map sampling effort bias using cartogram models and ii) explicitly consider such uncertainty in the modeling procedure under a Bayesian framework, which allows the integration of multilevel input data with prior information to improve the anticipation species distributions.
2017
584-585
Rocchini, Duccio; Garzon Lopez, C. X.; Marcantonio, M.; Amici, V.; Bacaro, G.; Bastin, L.; Brummitt, N.; Chiarucci, A.; Foody, G. M.; Hauffe, H. C.; H...espandi
Anticipating species distributions: Handling sampling effort bias under a Bayesian framework / Rocchini, Duccio; Garzon Lopez, C. X.; Marcantonio, M.; Amici, V.; Bacaro, G.; Bastin, L.; Brummitt, N.; Chiarucci, A.; Foody, G. M.; Hauffe, H. C.; He, K. S.; Ricotta, C.; Rizzoli, A.; Rosà, R.. - In: SCIENCE OF THE TOTAL ENVIRONMENT. - ISSN 0048-9697. - STAMPA. - 2017:584-585(2017), pp. 282-290.
File in questo prodotto:
File Dimensione Formato  
STOTEN_2017.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/170610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
  • OpenAlex ND
social impact