Photoplethysmography (PPG) is a simple, unobtrusive and low-cost technique for measuring blood volume pulse (BVP) used in heart-rate (HR) estimation. However, PPG based heart-rate monitoring devices are often affected by motion artifacts in on-the-go scenarios, and can yield a noisy BVP signal reporting erroneous HR values. Recent studies have proposed spectral decomposition techniques (e.g. M-FOCUSS, Joint-Sparse-Spectrum) to reduce motion artifacts and increase HR estimation accuracy, but at the cost of high computational load. The singular-value-decomposition and recursive calculations present in these approaches are not feasible for the implementation in real-time continuous-monitoring scenarios. In this paper, we propose an efficient HR estimation method based on a combination of fast-ICA, RLS and BHW filter stages that avoids sparse signal reconstruction, while maintaining a high HR estimation accuracy. The proposed method outperforms the state-of-the-art systems on the publicly ...

HEAL-T: An efficient ppg-based heart-rate and IBI estimation method during physical exercise

Mayor Torres, Juan Manuel;Ghosh, Arindam;Stepanov, Evgeny;Riccardi, Giuseppe
2016-01-01

Abstract

Photoplethysmography (PPG) is a simple, unobtrusive and low-cost technique for measuring blood volume pulse (BVP) used in heart-rate (HR) estimation. However, PPG based heart-rate monitoring devices are often affected by motion artifacts in on-the-go scenarios, and can yield a noisy BVP signal reporting erroneous HR values. Recent studies have proposed spectral decomposition techniques (e.g. M-FOCUSS, Joint-Sparse-Spectrum) to reduce motion artifacts and increase HR estimation accuracy, but at the cost of high computational load. The singular-value-decomposition and recursive calculations present in these approaches are not feasible for the implementation in real-time continuous-monitoring scenarios. In this paper, we propose an efficient HR estimation method based on a combination of fast-ICA, RLS and BHW filter stages that avoids sparse signal reconstruction, while maintaining a high HR estimation accuracy. The proposed method outperforms the state-of-the-art systems on the publicly ...
2016
European Signal Processing Conference
345 E 47TH ST, NEW YORK, NY 10017 USA
European Signal Processing Conference, EUSIPCO
Mayor Torres, Juan Manuel; Ghosh, Arindam; Stepanov, Evgeny; Riccardi, Giuseppe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/169106
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact