Dopamine (DA), through D1/D2 receptor-mediated signaling, plays a major role in the control of epileptic seizures arising in the limbic system. Excitotoxicity leading to neuronal cell death in the affected areas is a major consequence of seizures at the cellular level. In this respect, little is known about the role of DA receptors in the occurrence of epilepsy-induced neuronal cell death. Here we analyze the occurrence of seizures and neurotoxicity in D2R -/- mice treated with the cholinergic agonist pilocarpine. We compared these results with those previously obtained with kainic acid (KA), a potent glutamate agonist. Importantly, D2R -/- mice develop seizures at doses of both drugs that are not epileptogenic for WT littermates and show greater neurotoxicity. However, pilocarpine-induced seizures result in a more widespread neuronal death in both WT and D2R -/- brains in comparison to KA. Thus, the absence of D2R lowers the threshold for seizures induced by both glutamate and acetylcholine. Moreover, the dopaminergic control of epilepsy-induced neurodegeneration seems to be mediated by distinct interactions of D2R signaling with these two neurotransmitters.

Dopamine D2 receptor signaling controls neuronal cell death induced by muscarinic and glutamatergic drugs / Bozzi, Yuri; Borrelli, E.. - In: MOLECULAR AND CELLULAR NEUROSCIENCES. - ISSN 1044-7431. - 19:2(2002), pp. 263-271. [10.1006/mcne.2001.1064]

Dopamine D2 receptor signaling controls neuronal cell death induced by muscarinic and glutamatergic drugs

Bozzi, Yuri;
2002-01-01

Abstract

Dopamine (DA), through D1/D2 receptor-mediated signaling, plays a major role in the control of epileptic seizures arising in the limbic system. Excitotoxicity leading to neuronal cell death in the affected areas is a major consequence of seizures at the cellular level. In this respect, little is known about the role of DA receptors in the occurrence of epilepsy-induced neuronal cell death. Here we analyze the occurrence of seizures and neurotoxicity in D2R -/- mice treated with the cholinergic agonist pilocarpine. We compared these results with those previously obtained with kainic acid (KA), a potent glutamate agonist. Importantly, D2R -/- mice develop seizures at doses of both drugs that are not epileptogenic for WT littermates and show greater neurotoxicity. However, pilocarpine-induced seizures result in a more widespread neuronal death in both WT and D2R -/- brains in comparison to KA. Thus, the absence of D2R lowers the threshold for seizures induced by both glutamate and acetylcholine. Moreover, the dopaminergic control of epilepsy-induced neurodegeneration seems to be mediated by distinct interactions of D2R signaling with these two neurotransmitters.
2002
2
Bozzi, Yuri; Borrelli, E.
Dopamine D2 receptor signaling controls neuronal cell death induced by muscarinic and glutamatergic drugs / Bozzi, Yuri; Borrelli, E.. - In: MOLECULAR AND CELLULAR NEUROSCIENCES. - ISSN 1044-7431. - 19:2(2002), pp. 263-271. [10.1006/mcne.2001.1064]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/168782
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
  • OpenAlex 32
social impact