Neurotrophins play a crucial role in the development and activity- dependent plasticity of the visual cortex [Berardi N. et al. (1994) Proc. natn. Acad. Sci. U.S.A. 91, 684-688; Bonhoeffer T. (1996) Curr. Opin. Neurobiol. 6, 119-126; Cellerino A. and Maffei L. (1996) Prog. Neurobiol. 49, 53-71; Domenici L. et al. (1994) NeuroReport 5, 2041-2044; Galuske R.A.W. et al. (1996) Eur. J. Neurosci. 8, 1554-1559; Katz L.C. and Shatz C.J. (1996) Science 274, 1133-1138; Maffei L. et al. (1992) J. Neurosci. 12, 4651-4662; Pizzorusso T. and Maffei L. (1996) Curr. Opin. Neurol. 9, 122-125; Thoenen H. (1995) Science 270, 593-598]. As a possible mechanism of action, it has been postulated that the activity-dependent expression of neurotrophins by cortical cells could regulate synapse stabilization during the first period of postnatal life (critical period). Indeed, brain-derived neurotrophic factor messenger RNA expression in the visual cortex is regulated by neuronal activity as well as during development [Castren E. et al. (1992) Proc. natn. Acad. Sci. U.S.A. 89, 9444-9448]. Moreover, we showed that monocular deprivation decreases brain-derived neurotrophic factor messenger RNA levels in the visual cortex receiving input from the deprived eye [Bozzi Y. et al. (1995) Neuroscience 69, 1133-1144]. What is missing, however, is the demonstration that brain-derived neurotrophic factor protein expression follows that of brain-derived neurotrophic factor messenger RNA. The aim of the present study is to fill this important gap in order to support the hypothesis that brain-derived neurotrophic factor is fundamental in the plasticity of the visual cortex. We found that brain-derived neurotrophic factor immunoreactivity peaks during the critical period and that it is preferentially localized in layers II-III and V-VI. We also demonstrated that monocular deprivation determines a decrease of brain-derived neurotrophic factor immunoreactivity exclusively in the visual cortex contralateral to the deprived eye. Our results support the proposed role for brain-derived neurotrophic factor in the development and activity-dependent plasticity of the visual cortex [Cabelli R.J. et al. (1995) Science 267, 1662-1666].

Monocular deprivation decreases Brain-derived Neurotrophic Factor immunoreactivity in the rat visual cortex / Rossi, F. M.; Bozzi, Yuri; Pizzorusso, T; Maffei, L.. - In: NEUROSCIENCE. - ISSN 0306-4522. - 90:2(1999), pp. 363-368. [10.1016/S0306-4522(98)00463-1]

Monocular deprivation decreases Brain-derived Neurotrophic Factor immunoreactivity in the rat visual cortex

Bozzi, Yuri;
1999-01-01

Abstract

Neurotrophins play a crucial role in the development and activity- dependent plasticity of the visual cortex [Berardi N. et al. (1994) Proc. natn. Acad. Sci. U.S.A. 91, 684-688; Bonhoeffer T. (1996) Curr. Opin. Neurobiol. 6, 119-126; Cellerino A. and Maffei L. (1996) Prog. Neurobiol. 49, 53-71; Domenici L. et al. (1994) NeuroReport 5, 2041-2044; Galuske R.A.W. et al. (1996) Eur. J. Neurosci. 8, 1554-1559; Katz L.C. and Shatz C.J. (1996) Science 274, 1133-1138; Maffei L. et al. (1992) J. Neurosci. 12, 4651-4662; Pizzorusso T. and Maffei L. (1996) Curr. Opin. Neurol. 9, 122-125; Thoenen H. (1995) Science 270, 593-598]. As a possible mechanism of action, it has been postulated that the activity-dependent expression of neurotrophins by cortical cells could regulate synapse stabilization during the first period of postnatal life (critical period). Indeed, brain-derived neurotrophic factor messenger RNA expression in the visual cortex is regulated by neuronal activity as well as during development [Castren E. et al. (1992) Proc. natn. Acad. Sci. U.S.A. 89, 9444-9448]. Moreover, we showed that monocular deprivation decreases brain-derived neurotrophic factor messenger RNA levels in the visual cortex receiving input from the deprived eye [Bozzi Y. et al. (1995) Neuroscience 69, 1133-1144]. What is missing, however, is the demonstration that brain-derived neurotrophic factor protein expression follows that of brain-derived neurotrophic factor messenger RNA. The aim of the present study is to fill this important gap in order to support the hypothesis that brain-derived neurotrophic factor is fundamental in the plasticity of the visual cortex. We found that brain-derived neurotrophic factor immunoreactivity peaks during the critical period and that it is preferentially localized in layers II-III and V-VI. We also demonstrated that monocular deprivation determines a decrease of brain-derived neurotrophic factor immunoreactivity exclusively in the visual cortex contralateral to the deprived eye. Our results support the proposed role for brain-derived neurotrophic factor in the development and activity-dependent plasticity of the visual cortex [Cabelli R.J. et al. (1995) Science 267, 1662-1666].
1999
2
Rossi, F. M.; Bozzi, Yuri; Pizzorusso, T; Maffei, L.
Monocular deprivation decreases Brain-derived Neurotrophic Factor immunoreactivity in the rat visual cortex / Rossi, F. M.; Bozzi, Yuri; Pizzorusso, T; Maffei, L.. - In: NEUROSCIENCE. - ISSN 0306-4522. - 90:2(1999), pp. 363-368. [10.1016/S0306-4522(98)00463-1]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/168780
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 40
  • OpenAlex 49
social impact